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Abstract

The quality of a Computer Vision system is proportional to the rigor of data
representation it is built upon. Learning expressive representations of images is
therefore the centerpiece to almost every computer vision application, including
image search, object detection and classification, human re-identification, object
tracking, pose understanding, image-to-image translation, and embodied agent
navigation to name a few. Deep Neural Networks are most often seen among the
modern methods of representation learning. The limitation is, however, that deep
representation learning methods require extremely large amounts of manually
labeled data for training. Clearly, annotating vast amounts of images for various
environments is infeasible due to cost and time constraints. This requirement of
obtaining labeled data is a prime restriction regarding pace of the development of
visual recognition systems.

In order to cope with the exponentially growing amounts of visual data generated
daily, machine learning algorithms have to at least strive to scale at a similar rate.
The second challenge consists in the learned representations having to generalize
to novel objects, classes, environments and tasks in order to accommodate to the
diversity of the visual world. Despite the evergrowing number of recent publica-
tions tangentially addressing the topic of learning generalizable representations,
efficient generalization is yet to be achieved. This dissertation attempts to tackle
the problem of learning visual representations that can generalize to novel settings
while requiring few labeled examples.

In this research, we study the limitations of the existing supervised representation
learning approaches and propose a framework that improves the generalization
of learned features by exploiting visual similarities between images which are not
captured by provided manual annotations. Furthermore, to mitigate the common
requirement of large scale manually annotated datasets, we propose several ap-
proaches that can learn expressive representations without human-attributed labels,
in a self-supervised fashion, by grouping highly-similar samples into surrogate
classes based on progressively learned representations.

The development of computer vision as science is preconditioned upon the
seamless ability of a machine to record and disentangle pictures’ attributes that
were expected to only be conceived by humans. As such, particular interest was
dedicated to the ability to analyze the means of artistic expression and style which
depicts a more complex task than merely breaking an image down to colors and
pixels. The ultimate test for this ability is the task of style transfer which involves
altering the style of an image while keeping its content. An effective solution
of style transfer requires learning such image representation which would allow
disentangling image style and its content. Moreover, particular artistic styles come
with idiosyncrasies that affect which content details should be preserved and which
discarded. Another pitfall here is that it is impossible to get pixel-wise annotations
of style and how the style should be altered. We address this problem by proposing
an unsupervised approach that enables encoding the image content in such a way
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that is required by a particular style. The proposed approach exchanges the style
of an input image by first extracting the content representation in a style-aware
way and then rendering it in a new style using a style-specific decoder network,
achieving compelling results in image and video stylization.

Finally, we combine supervised and self-supervised representation learning
techniques for the task of human and animals pose understanding. The proposed
method enables transfer of the representation learned for recognition of human
poses to proximal mammal species without using labeled animal images. This
approach is not limited to dense pose estimation and could potentially enable
autonomous agents from robots to self-driving cars to retrain themselves and adapt
to novel environments based on learning from previous experiences.
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Zusamenfassung

Die Qualität eines Computer Vision Systems ist proportional zur Genauigkeit
der Daten-Repräsentationen, auf welchen das System beruht. Das Erlernen von
aussagekräftigen Repräsentationen von Bildern ist folglich das Herzstück fast
jeder Computer Vision Applikation, einschließlich Bildsuche, Objekt-Detektion
und -Klassifikation, Re-Identifikation von Menschen, Objekt-Tracking, Verstehen
von Körperhaltung, Bild-zu-Bild Überführung oder Navigation von intelligenten
virtuellen Agenten, um hierbei lediglich einige zu nennen. Tiefe Neuronale Netze
sind am häufigsten vertreten unter den modernen Methoden des Representation
Learning. Die Limitierung dabei ist jedoch, dass Methoden des Deep Represen-
tation Learning ein sehr großes Volumen an Trainingsdaten benötigen, welche
vorab manuell gekennzeichnet werden müssen und somit ein Label erhalten. Offen-
sichtlich ist die Annotation einer derart großen Datenmenge an Bildern unzumutbar
aufgrund von Zeit- und Kosten-Restriktionen. Die Anforderung zur Bereitstellung
annotierter Daten ist hierbei eine wesentliche Einschränkung bei der Entwicklung
von Systemen zur visuellen Erkennung.

Um die exponentiell wachsende Menge an visuellen Daten bewältigen zu können,
welche täglich neu entstehen, müssen Algorithmen für Maschinelles Lernen eine
Skalierung mit ähnlicher Rate zumindest anstreben. Die zweite Herausforderung
besteht daraus, dass erlernte Repräsentationen in der Lage sein müssen zu general-
isieren angesichts neuer Objekte, Klassen, Umgebungen sowie Aufgaben, um der
Diversität der visuellen Welt gerecht werden zu können. Trotz einer steigenden An-
zahl an neuesten wissenschaftlichen Veröffentlichungen, welche sich tangential mit
der Thematik des Erlernens von generalisierbaren Repräsentationen beschäftigen,
besteht weiterhin die Problemstellung der effizienten Generalisierung.

Diese Dissertation ist bestrebt diese Problematik des Erlernens visueller Repräsen-
tationen anzugehen, um eine effiziente Generalisierung zu ermöglichen, sodass
neue Umgebungen verarbeitet werden können ohne die Notwendigkeit annotierter
Daten. In dieser Arbeit betrachten wir die Grenzen existierender Ansätze für
Supervised Representation Learning und schlagen ein Framework vor, welches die
Fähigkeit zur Generalisierung erlernter Merkmale verbessert. Dies wird erreicht
durch die Nutzung von Ähnlichkeiten zwischen Bildern, welche sich nicht durch
die manuelle Annotation visueller Daten erfassen lassen. Darüber hinaus schlagen
wir mehrere Ansätze zum Erlernen aussagekräftiger Repräsentationen vor, welche
ohne Annotation auskommen und in selbst-überwachter Methodik konzipiert
sind, indem hochgradig-ähnliche Stichproben gemeinsam gruppiert werden zu
stellvertretenden Klassen basierend auf stufenweise-erlernten Repräsentationen.
Somit wird die Restriktion der Notwendigkeit großer Datenmengen mit Annotation
relaxiert.

Die Entwicklung von Computer Vision als Wissenschaft setzt nahtloses Vermögen
einer Maschine voraus die Attribute eines Bildes zu registrieren sowie zu ent-
flechten, was zuvor lediglich dem Vermögen von Menschen zugesprochen wurde.
Infolgedessen wurde spezielles Interesse den bildenden Künsten zuteil sowie der
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Analyse verschiedener Stilrichtungen, was weitaus komplexer ist als lediglich die
Unterteilung von Bildern in Farben und Pixel. Ein maßgebender Test für dieses
Vermögen stellt der Transfers von Stilrichtungen dar, was das Verändern des Stiles
eines Bildes beinhaltet, ohne dabei den visuellen Inhalt zu verändern. Eine effektive
Lösung für Stil-Transfer erfordert das Erlernen entsprechender Repräsentationen,
welche es ermöglichen den Stil eines Bildes sowie den Inhalt zu entflechten. Indi-
viduelle künstlerische Stile beinhalten Eigenheiten, die Auskunft darüber geben
welche Details für den Transfer beibehalten werden sollen und welche nicht. Eine
weitere Herausforderung ist dabei, dass es quasi unmöglich ist pixelweise An-
notationen zu erhalten hinsichtlich des Stils und wie dieser angepasst werden
sollte. In dieser Arbeit adressieren wir diese Problematik und schlagen einen
unüberwachten Ansatz vor, welcher die Enkodierung von Bildinhalten ermöglicht,
die notwendig sind für einen bestimmten Stil. Der vorgeschlagene Ansatz tauscht
den Stil eines Eingabe-Bildes indem zunächst die Repräsentation des Inhalts mit
einem stil-bewussten Verfahren extrahiert wird. Anschließend wird mittels des
neuen Stils gerendert unter der Verwendung eines stil-spezifischen Decoder Netzw-
erks, sodass überzeugende Resultate bei der Bild- sowie Video-Stilisierung erreicht
werden.

Abschließend kombinieren wir Techniken für überwachtes und selbst-überwach-
tes Erlernen von Repräsentationen für die Aufgabenstellung zum Verstehen von
Körperhaltungen von Menschen sowie Tieren. Die vorgeschlagenen Methoden
ermöglichen den Transfer erlernter Repräsentationen zur Erkennung menschlicher
Körperhaltungen zu denen von ähnlichen Säugetieren ohne hierbei annotierte
Daten verwenden zu müssen. Dieser Ansatz ist hierbei nicht beschränkt auf Dense
Pose Schätzung und könnte potenziell eine Reihe an autonomen Agenten befähigen,
von Robotern bis hin zu autonomen Fahrzeugen, sodass diese in der Lage sind
selbst weiter zu lernen und folglich sich an neue Umgebungen basierend auf vorher
Erlerntem anpassen können.
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1 Introduction

Labels are the opium of a machine
learning researcher.

Prof. Dr. Jitendra Malik, 2019.

An ambitious goal of Computer Vision is to create an Artificial Intelligence (AI)
system which is capable of an automatic understanding of the visual world around
us, mimicking the human visual system. Such an AI system should also be able to
plan and make decisions based on perceived visual observations. Human vision
is capable of extracting conceptual information from the images even when they
are present for a very short amount of time and test questions about them are not
accessible in advance [218]. In other words, visual input is converted into some
abstract representation that is general enough to be easily adapted for various
downstream tasks. Similar behavior is desired for AI systems. To achieve this goal,
AI needs to identify the underlying explanatory factors hidden in the observed
low-level sensory data and build abstract representations of the input [15].

The process of manually searching for an appropriate input data representation
by designing preprocessing and data transformations is called feature engineering.
Data representations (features) extracted in this way are subsequently used for
efficient training of the predictor that is supposed to output the final solution for
a problem (e.g., classification or regression). Prominent works on handcrafted
features include bag-of-features (BOF) [250], scale-invariant feature transform (SIFT)
[178], histogram of oriented gradients (HOG) [47], and vector of locally aggregated
descriptors (VLAD) [127]. Feature engineering is a very challenging process that
heavily depends on a dataset and target task and often requires domain knowledge.
Moreover, manual feature engineering is very laborious because ad-hoc solutions
suitable for one task do not necessarily generalize to another; hence, the features
have to be re-designed for every novel task. To circumvent the need for such a
manual design of visual recognition pipelines, it is natural to seek an approach
that would be able to extract useful representations from the data automatically.

In the past twenty years, we have witnessed a rapid increase in routinely available
computational power as well as an emergence of effective methods for training
deep neural network architectures [86, 149, 153, 154, 157] that can extract hierarchical
features directly from raw input data. Therefore, recent methods do not require
feature engineering, but rather learn features from large-scale data. Hence, end-to-
end learnable systems substitute carefully handcrafted pipelines.
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1 Introduction

Deep learning systems, however, require enormous amounts of manually an-
notated training data. Besides the fact that manual annotations are very tedious
and expensive to collect, it is infeasible to label every potential object of interest.
Furthermore, it could even be impossible to collect a complete set of annotations re-
quired for learning some complex tasks like autonomous driving or image-to-image
translation. Therefore, the traditional supervised learning paradigm suffers from
such severe limitations and cannot scale. In recent years, we noticed the emergence
of large amounts of easily accessible unlabeled and weakly labeled (using hashtags
or meta-information) visual data on the internet. This in turn has spurred interest
in the methods, which can learn with limited [28, 233, 304] or no human supervision
at all [11, 51, 55, 101, 206, 285].

So, the question remains: How can AI learn without supervision? Biological
systems are an inexhaustible source of inspiration in the field of AI research [251].
The core idea of learning without labels is learning to represent the environment
before addressing any specific task. For example, human infants gain a basic
understanding of the world before the age of 12-15 months purely in a self-supervised
regime – by observing their surroundings and repeated interactions with various
objects in their environment. In such a way, by the age of 7-9 months, they acquire
basic object manipulation skills, and by the age of 12 months they master crawling
and learn about elementary physical phenomena including gravity, inertia, object
collision, and occlusion [10, 89, 232]. The basic learning mechanism at this stage is
the following: First, build a simple hypothesis about a certain phenomenon (e.g.,
whether a toy car will roll down the ramp after a hit by a cylinder, or not) and refine
the hypothesis during further experience by discovering and incorporating extra
influencing factors (e.g., the size of the object hitting the car can impact the length
of the car’s trajectory). Starting from such easy concepts, toddlers can develop
more complex skills as they gain more understanding of how the world works.
When a child has a solid background knowledge about its environment, it can learn
new tasks faster. For example, an adult need only show a cat to a 2-year-old child
once for the child to learn to recognize and categorize any other cat later. There
is no need to show thousands of cats for this learning to take place. This type of
learning is dubbed few-shot learning in the machine learning field, and it can be
used to measure how well the learned representation of the world generalizes to
novel objects and tasks [70, 75, 150].

Having said that, our desired AI system should be able to learn like the human
child by continuously observing and revisiting its hypotheses about the world with
very limited supervision. More specifically, it should have the following traits:

1. Learning with minimal supervision or without supervision at all.

2. Learned representations should be compact and encode explanatory factors
of the observation. These factors should be ideally disentangled.

2



1.1 Representation learning

3. Ability to generalize from previous experience. Learned representations
should be general and serve as a basis for faster learning of novel tasks and
attaining new skills, with only a few labeled examples provided.

Methods that do not require manual annotations for learning are called unsu-
pervised or self-supervised. One of the main goals for these methods is to learn
a compact representation of the world before learning downstream tasks. Such
methods employ intrinsic supervisory signals contained in the input data. For
example, learning can be achieved by predicting the outcome of an event and
refining the hypothesis after every observation or by solving some surrogate tasks
for which the labels can be easily obtained from the data automatically (e.g., erasing
parts of the image and predicting the missing parts [215]). An important advantage
of such methods is that they are free from human bias, which is introduced by
manually curating and labeling the data. However, the performance of existing
self-supervised methods still lags behind the fully supervised approaches for many
computer vision tasks and there is huge room for improvement.

In this thesis, we explore the limitations of existing supervised and self-supervised
representation learning techniques. We propose novel learning approaches to im-
prove the generalization performance in scenarios when manual annotations are
limited (metric learning in particular) or when no annotations are available at all
(self-supervised learning). Then we present a novel method that allows transferring
knowledge attained by learning on a labeled source domain to an unlabeled target
domain in self-training fashion.

Finally, we tackle learning disentangled representations of image attributes in
an unsupervised regime. In particular, we consider a style transfer task [79] —
exchanging the artistic style of an image while keeping its content, for which
the ability to decompose and separately represent the image content and style
is essential. This task is especially challenging because the direct supervision is
impossible to attain due to the infeasibility to manually segment out the artistic
style from the content of the artworks. Moreover, particular artistic styles come with
idiosyncrasies that affect which content details are preserved from the real scene
and which discarded. Hence, there is a demand for a flexible approach respecting
such peculiarities. This dissertation presents a novel approach for learning such
a content representation that respects idiosyncrasies of a target style and enables
compelling stylization quality without any supervision. Furthermore, the suggested
representation enables real-time high-resolution image and video stylization.

1.1 Representation learning

This thesis addresses two major problems: learning generalizable representations
and reducing the number of annotations required for learning. In particular, we
first tackle a supervised scenario where the representations are learned using
metric learning methods. Then we approach a self-supervised scenario where
the task is to learn merely from raw data by discovering intrinsic structures and
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1 Introduction

regularities. Next, we combine the latter two scenarios and propose a self-training
approach to adapt the representation attained by supervised pretraining to solve
a task on the target domain which does not have any ground truth annotations.
After that, we study how to learn disentangled representations for the style transfer
task by decoupling an image into the content and style representations. The
proposed unsupervised solution circumvents the impossibility of collecting manual
annotations for such an image-to-image translation task.

In the following subsections, we give an introduction to the aforementioned
problems and establish the context of the work performed in this thesis.

1.1.1 Metric Learning
1

The exponential increase of easily accessible digital images and the importance
of image retrieval and related tasks for numerous applications call for fast and
scalable representation learning approaches. Deep Metric Learning (DML) is a class
of representation learning approaches which aims to learn such a representation
space (often called embedding space2) so that a predefined distance measure in this
space can be used to describe the similarity between an arbitrary pair of data points.
DML has for long been of major interest for the vision community, due to its broad
applications including image search and object retrieval [14, 198, 210, 274, 281, 295],
zero-shot and single-shot learning [210, 274], keypoint descriptor learning [248],
face verification [41, 241, 282, 292], vehicle identification [42, 171, 311], near duplicate
detection [320], visualization of high-dimensional data [95, 182], and clustering [106].
The typical scenario for DML is to train on one set of categories and evaluate on a
completely different set of test categories. Therefore, the main goal of DML is to
learn such a representation space that is able to generalize to previously unseen
images and categories.

Formaly, given an image dataset X = {x1, . . . , xn} ⊂ X with the corresponding
class labels Y = {y1, . . . , yn}, where X is the original RGB space, the task of
DML is to learn a similarity measure between an arbitrary pair of images xi and
xj. During training, the target similarity is provided by a user in the form of
discrete ground-truth classes, since it is infeasible to obtain continuous ground-
truth similarity scores. We then need to learn a mapping f from images to a
representation space so that a predefined distance measure in this space captures
the desired similarity between the images, i.e., the distances between images from
the same class should be small, and the distances between images from different
classes should be large. The mapping f is learned directly from RGB values using
a Convolutional Neural Network (CNN) which maps an RGB image xi onto a point
f (xi) in the d-dimensional embedding space Rd. The distance between two points

1The content of this subsection is partially based on the author’s paper which is currently under
review, ”Improving Deep Metric Learning by Divide and Conquer“ [239].

2We will use the terms representation and embedding interchangeably in the context of Deep Metric
Learning throughout this thesis.
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i and j in the embedding space is then computed using a predefined distance
measure, e.g. Euclidean distance di,j = || f (xi)− f (xj)||2.

Loss functions. The Deep Metric Learning task implies specific loss functions
which can be used to learn the mapping f satisfying our needs. And there is a large
body of work focusing on designing new loss functions for Deep Metric Learning.
One of the most renowned loss functions is triplet loss [241, 291]. Let us consider
a tuple of images (xa, xp, xn), where xa is an anchor image, xp is a positive image
from the same class as the anchor image and xn is a negative image from any other
class. The triplet loss pushes the anchor image xa closer to the positive image xp
and further from the negative image xn and is defined as

ltriplet(a, p, n) =
[
d2

a,p − d2
a,n + α

]
+

, (1.1)

where [·]+ denotes the positive part and α is the margin hyperparameter.
Beyond the triplet loss, there is a pletora of diferent loss functions [198, 252, 253,

274, 280, 288]. For example, Facility Location loss [253] optimizes a clustering quality
metric, Histogram loss [274] minimizes the overlap between the distribution of
positive and negative distances, and Angular loss [280] imposes extra geometrical
constraints in the embedding space. LiftedStruct [210] and N-pairs [252] losses
introduce a soft formulation of the triplet loss [291] replacing hinge function with
Neighbourhood Component Analysis (NCA) [230] formulation which does not
require tuning of a margin parameter. Recently, Yu et al. [310] modified N-pairs loss
by introducing a margin and a temperature scaling in the objective and an extra
loss term which penalizes high intra- and inter-class pairwise distance variance.
Proxy-based losses [8, 143, 198] further extend the NCA paradigm by computing
proxies (prototypes) for the training classes in the dataset and optimizing the
distances to these proxies using the NCA objective[230]. Proxy-based losses are
closely related to the classification-based Deep Metric Learning methods [173, 279,
315]. In this case, the training images are classified using the softmax function,
where the columns of the weight matrix of the classification layer represent the
prototypes for the classes. Magnet loss [225] is similar to proxy-based losses,
but it does not learn the class prototypes. Instead, it splits every ground truth
class into sub-classes by clustering and pushes training samples closer to the
precomputed centroids of the corresponding sub-classes. Wen et al. [292] proposed
to use a center loss jointly with the softmax classification loss to enforce more
clustered representations by minimizing the Euclidean distance between the image
embeddings and the learnable centroids of the corresponding classes. MIC [227]
models visual characteristics shared across classes by utilizing an extra surrogate
loss discriminating between data clusters. SoftTriple Loss [219] upgrades the
softmax classification loss by learning multiple prototypes for each class, allowing
to capture several modes for the classes with high intra-class variance. The major
drawback of proxy- and classification-based losses is the limited scalability with
respect to the number of classes. Another type of loss is FastAP [179] which aims at
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ranking the images by optimizing the non-differentiable Average Precision (AP)
measure. The authors use a probabilistic interpretation of the AP and approximate
it by distance quantization and histogram binning.

Our work, which we present in Chapter 2, is orthogonal to all aforementioned
approaches, as it provides a framework for learning a distance metric that is
independent of the choice of a particular loss function.

Informative sample mining. It is common for metric learning methods to use pairs
[20, 313] or triplets [112, 241, 281, 291] of samples. Some even use quadruplets [274] or
impose constraints on tuples of larger sizes [105, 210, 252]. Using tuples of images
as training samples yields a huge amount of training data. However, only a small
portion of the samples among all Np possible tuples of size p is informative because
most of the tuples produce very low loss and insufficient gradient for learning. A
lot of works attempted to explore how to select the most informative tuples for
training, and such approaches can be categorized into two groups: (a) methods
which focus on meaningful sample mining within a randomly drawn mini-batch,
and (b) the methods which mine the entire dataset but require computationally
expensive preprocessing steps.

The first group of methods strives to find informative samples within a randomly
drawn mini-batch (local mining). Some of the methods from this category utilize
all pairwise relationships within a mini-batch [49, 210], others mine hard negative
[105, 241] or easy positive pairs [302]. Wang et al. [287] consider all possible pairs
within the batch but set the weights for negative pairs as the exponent of the
margin violation magnitude. MS-loss [288] generalizes tuple-based losses and
reformulates them as different weighting strategies of positive and negative pairs
within a mini-batch. Wu et al. [296] sample negative examples uniformly according
to their relative distance to the anchor, and, recently, Roth et al. [228] proposed to
learn the distribution for sampling negative examples instead of using a predefined
one. Deep Adversarial Metric Learning (DAML) [57] generates synthetic hard
negatives for the current mini-batch using adversarial training. Hard Triplet
Generation (HTG) [319] also employs adversarial training to alter a given triplet by
pushing embedding vectors of the images from the same class apart while pulling
embedding vectors of the images from different classes closer. Deep Variational
Metric Learning (DVML) [169] assumes that the distribution of intra-class variance
is independent on the class label and makes a negative example harder by adding a
variance component sampled from the learned distribution. Another approach that
synthesizes hard negatives is Hardness-Aware Deep Metric Learning (HDML) [321],
it uses linear interpolation to move the negative example closer to the positive
one in the embedding space, thus increasing the triplet hardness. The drawback
of the local mining methods is the lack of global information while having only a
local view of the data based on a single randomly-drawn mini-batch of images.
As a consequence, the performance of such approaches strongly depends on the
mini-batch size, which is limited by the GPU memory size.
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The mining approaches in the second group have a global view of the data and
utilize the entire dataset for finding samples that provide the largest training signal
(global mining). Wang et al. [281] relies on a highly optimized handcrafted ”golden
feature” to compute the pairwise and unary relevance scores for all images in the
dataset. The closer the image to the class centroid, the higher the unary relevance
it gets. The anchor, positive and negative examples are then sampled according to
the relevance scores. The shortcoming of this approach is that the ”golden feature”
is expensive to compute, difficult to develop, and is crafted for a specific dataset.
Later works [82, 99, 122, 229] do not rely on handcrafted features and mine hard
negative examples in the learned embedding space. However, these sampling
techniques require either running an expensive preprocessing step (quadratic in
the number of data points) for the entire dataset and for every epoch [82, 99, 122,
229] or utilize additional meta-class labels [24] for hard sample mining. Suh et
al. [257] sample negative pairs of images from the most confused classes. But this
approach requires a joint training of the classification head using softmax loss and
the embedding layer using a triplet loss. The approach proposed in this thesis (in
Chapter 2) can efficiently alleviate the problem of abundance of easy samples by
jointly dividing the data and the representation space into subparts during training
and does not require an extra classification head. Also, in contrast to [24], our
method is designed with the idea of using less manual annotations in mind and
does not rely on meta-class labels. Moreover, our approach is complementary to
the local mining methods and can be used jointly with them.

Ensembling for deep metric learning. Another line of work in Deep Metric Learn-
ing is ensemble learning [76, 94, 212, 311]. Previous works [212, 311] employ a
sequence of ”learners” with increasing complexity and mine samples of different
complexity levels for the next ”learners” using the outputs of the previous learners.
Hard-aware Deeply Cascaded Embedding (HDC) [311] uses a cascade of multiple
models of a specific architecture and trains earlier layers of the cascade with easier
examples while harder examples are harnessed in later layers. Boosting Indepen-
dent Embeddings Robustly (A-BIER) [212] applies a gradient boosting learning
algorithm to train several learners inside a single network in combination with
an adversarial loss [78, 87]. Attention-based Ensemble (ABE) [144] introduces soft
attention in the intermediate convolutional feature maps to focus on different parts
of the objects combined with extra divergence loss to diversify the attention. Deep
Randomized Ensembles for Metric Learning (DREML) [301] and Ensemble Deep
Manifold Similarity (EDMS) [8] train multiple networks on random splits of the
data using variants of the ProxyNCA [198] loss. The downside of these approaches
is the drastic increase in the number of parameters and the computational cost. The
key difference of the aforementioned approaches to the one proposed in this thesis
(see Chapter 2) is that we do not have an ensemble of the networks, but rather train
multiple ”learners” within a single network by splitting the representation space
and clustering the data so that each ”learner” is assigned to the specific subspace
and the corresponding portion of the data. The ”learners” are jointly trained on
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non-overlapping chunks of the data, which reduces the training complexity of
each individual ”learner”, facilitates the learning of decorrelated representations,
and can be easily parallelized. Moreover, our approach does not introduce extra
parameters during training since we do not alter the architecture and utilize only a
single network. It does not require any elaborate loss functions but can be applied
to arbitrary losses and any existing network architectures.

1.1.2 Self-supervised Learning

Nowadays, with an estimated 83% of the worldwide population having mobile
broadband internet subscription [256] and a wide spread of portable digital cameras,
users are uploading millions of hours of video [255] and billions of images to
the internet daily [120]. The amount of user-generated data hereby increases
exponentially. However, internet data rarely contains precise labels, which are
so crucial for supervised learning. Thus, such an abundance of unlabeled visual
data sparked a strong interest in scalable unsupervised representation learning
approaches.

The key to learning from raw data is trying to understand it. In order to
profoundly understand and explain the observed data, we need to discover the
hidden causes and explanatory factors which led to these observations in the first
place. In other words, unsupervised learning approaches strive to reveal unknown
properties of the source probability distribution that generated the data. In this
way, the observed data can be represented as a function of a smaller number of
explanatory factors, which means that a machine learning system can conceptualize
the data and build compact representations, which in turn can be used for various
downstream tasks.

Unsupervised representation learning approaches can be divided into shallow
(classical) methods and deep methods which are based on neural networks. While in
this thesis we focus on the latter methods, we will also briefly discuss the former.
Classical unsupervised learning approaches include cluster analysis [98], various
data decomposition methods which discover the most meaningful components
(principal component analysis (PCA) [189], independent component analysis (ICA)
[44], non-negative matrix factorization (NMF) [155], etc.) and dimensionality re-
duction methods (multidimensional scaling (MDS) [189], Isometric feature map-
ping (Isomap) [259], t-SNE [182], Uniform Manifold Approximation and Projection
(UMAP) [192], and more). While these methods can perform reasonably well for
low-dimensional inputs, they usually suffer from the curse of dimensionality in
high-dimensional data, e.g., images which could have millions of dimensions3.
Moreover, these methods often require a reliable measure of similarity between
pairs of inputs, which is actually the task for the representation learning approaches.

Deep unsupervised representation methods are also dubbed as self-supervised
because the supervision is usually obtained from the data automatically. The main

3A one-megapixel RGB image has 3 million dimensions.
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idea behind self-supervised methods is to construct a pretext/surrogate task for which
the supervisory signal can be algorithmically produced from the raw input data
instead of labeling the data manually.

Pretext tasks are designed in a way that in order to solve them, the model is
required to learn an efficient visual representation. One of the approaches to
construct a pretext task is to drop or distort parts of the input image and ask the
model to reconstruct it. For example, Larsson et al. [151] and Zhang et al. [316]
proposed to use image colorization as a pretext task. The input image is converted
to grayscale and the model is tasked to predict the original colors for every pixel.
Clearly, to solve this task, the model has to understand the contents of the image.
Gidaris et al. [84] tasks the network to predict 2d rotations that are applied to the
input image. This formulation, despite its simplicity, forces the network to learn
surprisingly good semantic features of the images. Learning the spatial context of
the image can be employed as a useful pretext task too. For instance, an image
inpainting pretext task was proposed in [215], where an arbitrary region in the
image is dropped and the model learns to generate the contents of this region
conditioned on its surroundings. Doersh et al. [51] and Norooze et al. [206] split the
image in a grid of patches and use the relative location of the image patches as a
learning cue. Another source of free supervision is the temporal context in videos.
Misra et al. [196] and Brattoli et al. [18] learn representations by identifying whether
the sequence of frames from a video is in correct temporal order or if it is permuted.
Wang et al. [285] go further and use spatiotemporal signals in videos for learning.
They propose to track moving objects in the videos and learn robust features by
enforcing the representation of the cropped-out objects to stay unchanged across
different frames. Büchler et al. [22] combine ideas from [206] and [18] and learn
by reconstructing the correct ordering of the visual data in both temporal and
spatial domain while using reinforcement learning to sample the permutations of
appropriate difficulty during training. Temporal coherence between consecutive
frames in the ego-centric monocular video allows to obtain a free learning signal by
estimating the ego-motion and comparing the consecutive frames reprojected on
one another [186, 324]. Another prominent pretext task is counting objects within
the image [207] relying on the equivariant transformations of the image, e.g., the
total sum of the object counts in the 4× 4 grid of image tiles should equal to the
count in the entire image.

Differently from the aforementioned works, in Chapter 3, 4 we propose a novel
method that leverages automatically discovered compact groups of semantically
related images (i.e., cliques) as surrogate classes for self-supervised learning [11,
236]. Cliques are built based on the available image features, for instance, off-the-
shelf handcrafted features or deep representations from a randomly initialized
CNN. Classification, whether the sample belongs to a clique (surrogate class),
serves as a pretext task. Concurrent works [160, 307] also group semantically similar
samples in the feature space to create surrogate labels. However, Li et al.[160]
formulate a pretext task as a binary classification to decide if the two images
are similar and, therefore, mine only pairs of related images, which hinders the
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effective modeling of the intra-class variance where more positive samples are
needed. Yang et al. [307] partition the entire dataset using clustering hence risking
to group samples which are not semantically related as the distances in the original
feature space of randomly initialized CNN are not always reliable [11]. Later,
Caron et al. [27] extend our work by proposing an optimized pipeline for training
on larger datasets using deeper network architectures and, instead of building
compact cliques of images, clustering the data with K-means [183] similar to [307].
Asano et al. [7] further improve on [27] by substituting the K-means clustering with
approximately solving an optimal transport problem to produce surrogate classes
of samples.

Another group of self-supervised methods aims to learn representations invari-
ant to various image perturbations by regarding every image and its random
augmentations as a separate surrogate class. Dosovitskiy et al. [55] learn a classifier
that distinguishes between these surrogate classes. But such an approach does
not scale well because the number of the classifier parameters grows linearly with
the number of instances in the training set. Recently, contrastive self-supervised
learning approaches [36, 37, 38, 91, 101, 104, 297] gained popularity and showed
very compelling results bridging the gap between supervised and unsupervised
pretraining for various Computer Vision tasks. Inspired by Deep Metric Learning
approaches, they use distance-based losses, which enforce a sample to be close to
its augmented view in the representation space enabling efficient scaling to very
large unlabeled datasets. Misra et al. [195] outperform for the first time supervised
pre-training for object detection task evaluated on Pascal VOC07 dataset [66], while
Grill et al. [91] outperform the supervised pretraining on ILSVRC-2012 [48] dataset
in the setting when only a subset of less than 10% of original ILSVRC-2012 training
labels are available. However, the driving force of these approaches is carefully
designed augmentations, the optimal configuration of which may be different for
different datasets. Moreover, an intra-class variance cannot be successfully captured
by pulling together only a single image and its perturbations, which our approach
in Chapters 3, 4 alleviates by finding compact cliques of samples.

Generative models. Generative models can also be used to learn representations
without supervision. For example, Autoencoders [111] learn low-dimensional
features, which would allow to precisely reconstruct the input. To make the
learned representations more robust, the input images may be corrupted, and
Autoencoder is required to restore the original input [276] (Denoising Autoencoder).
The inpainting approach of Pathak et al. [215] is similar in principle, but utilizes
larger image corruptions, dropping entire patches from images.

Generative Adversarial Networks (GANs) [88] is another powerful unsupervised
learning approach. GANs learn the distribution of natural images by generating
them in an adversarial mini-max game [88]. A GAN model consists of two separate
networks – a generator and a discriminator which compete with each other. The
goal of the generator is to generate fake images mimicking real images as close
as possible, and the discriminator strives to discern fake images from real ones.
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The optimal solution lies in the equilibrium point [88], but in practice, it is never
reached, and the discriminator usually wins as the task of distinguishing between
real and fake images is much easier than actually producing realistic fakes. There
are several attempts to suit GANs for learning representations [19, 53, 220], however,
they are usually inferior to the approaches based on the discriminative pretext tasks
discussed above because they have to focus on the generation aspect, often requiring
to capture low-level information about the images which could be excessive for
tasks like classification or detection and impair generalization.

Evaluation of self-supervised learning methods. In contrast to the supervised
approaches where the performance is measured by the accuracy with which the
model can predict a target value given an observation, the measure of success for
self-supervised approaches is how good the learned representations perform in
novel settings rendering the ability to generalization to new tasks and previously
unseen data. For example, learned representations can be evaluated by computing
image retrieval performance on novel images using the learned representations or
computing the performance on downstream tasks such as classification, segmenta-
tion, detection, or pose recognition, after finetuning the self-supervised pretrained
network on these tasks.

1.1.3 Self-training

Getting high-quality data annotations is a laborious, error-prone, and expensive
process, while the internet is abundant in unlabeled data. Techniques that involve
training on the labeled data and at the same time make use of a large corpus of
unlabeled data are called semi-supervised learning methods [28, 327].

Self-training [161, 205, 224, 267, 309] is a class of semi-supervised learning methods
which is often called teacher-student learning. In self-training, the amount of
available training instances is automatically extended by imputing labels for all
unlabeled data. First, a teacher network is trained on the provided labeled dataset.
Then it predicts pseudo-labels for unlabeled instances. After that, initially provided
labeled data and pseudo-labeled data is jointly used to train a student model. To
squeeze the last bits of performance, this teacher-student training process can be
repeated several times by using the current student model as a new teacher. The
main difference between self-training and other semi-supervised approaches like
those based on entropy minimization [90, 156] and consistency regularization [16,
197, 233, 258] is that in self-training pseudo-labels are produced by a more accurate
converged teacher model, while other approaches use the same model that is being
trained to generate pseudo-labels for unlabeled data in each mini-batch.

Recently, Xie et.al [299] demonstrated the effectiveness of the self-training and
achieved state-of-the-art accuracy on ImageNet [48] outperforming regular super-
vised training. Such remarkable performance of [299] was achieved by using an
enormous unlabeled dataset with 300M images (JFT [40, 110]), making a student
model larger than a teacher and improving the efficiency of student training. To
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make the student model generalize better than the teacher, authors applied extra
regularization techniques like dropout [254], stochastic depth [116] and aggressive
image augmentations [46] during the training of the student. Another prominent
work [304] experimented with an even larger unlabeled dataset of one billion
images from Instagram. A slightly different approach to produce pseudo-labels
for self-training is to propagate labels from annotated images to those without
annotations [121]. The label-propagation is done on the nearest neighbor graph
computed using the image embeddings extracted from the teacher network.

Predictions of a teacher model on an unlabeled dataset are not always correct
and can contain errors. Several approaches have been proposed to prevent the
injection of very noisy labels into student training. The first is to filter the pseudo-
labels based on classifier score or confidence of a model, which we will describe
in more detail in Chapter 5. The second approach is to average the predictions
of an ensemble of several teacher models [9, 323] increasing the robustness of the
produced pseudo-labels.

The self-training approaches discussed above aim at improving the generaliza-
tion of the model on the same task for which the annotated data is available by
leveraging additional unlabeled data. In this dissertation, we take it further and
propose a method that allows the model that was initially trained to solve a source
task, to adapt to a novel task for which no annotations are available (see Chapter 5).
Specifically, we consider the problem of learning to recognize the pose of animals
with as little supervision as possible. We study several strategies to transfer an
existing dense pose [92] extractor for humans to chimpanzees for which we have
zero ground truth annotations provided.

1.1.4 Style Transfer: Disentangling Content and Style

To understand why extracting and untangling different visual attributes is essential
for various Computer Vision applications, especially for image editing, we first
discuss general purpose image-to-image translation [34, 60, 107, 123] approaches
and then focus on a particular problem of style transfer.

Image editing. An image exhibits different visual attributes like appearance, layout,
shape, and style. Learning and disentangling these attributes is crucial for correct
perception of objects by a visual recognition system [74]. It is even more critical
to decouple visual attributes for image editing applications when only specific
objects or object properties must be altered. Suppose a model could learn such
representation of a human face, where different dimensions would be independent
and correspond to variation of different face attributes such as the shape of the
nose, ears, eyes, color of skin and hair, type of haircut. In that case, photorealistic
image editing could be performed as efficiently as dragging a set of sliders.

A typical framework for image-to-image translation [33, 123, 283] is usually based
on the Autoencoder architecture [111] with encoder and decoder networks. However,
instead of learning to reconstruct the input from the representation produced by
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the encoder, image-to-image translation methods aim to produce a transformed
image that satisfies certain constraints enforced by carefully devised loss functions.
Nevertheless, a lot of models are designed for generation of random images [139,
140] or images conditioned on class labels [19] and not for explicit editing of
user-provided images [172, 214]. Such models do not have an encoder network,
but only the decoder (also called generator), and generate images from a latent
representation randomly sampled from a Gaussian distribution. For such models
to edit an existing image, first, the image has to be projected into the representation
space; after that, one can do some manipulations with the representation vector and
decode it back into the RGB domain. Since the learned representation space is not
easily interpretable, it is not clear how to edit images in this space. To understand
how to change the representation vector to achieve desired image transformations,
Upchurch et al. and Shen et al. [245, 272] proposed to discover linear directions
in the representation space which are responsible for particular visual attributes.
For example, for face editing, discovered directions in the representation space can
correspond to head pose, smile, age, gender, and eyeglasses [245]. However, this
approach requires a significant amount of annotations. Moreover, interpretable
linear directions are not always possible to find, and some visual attributes can be
highly correlated, e.g., older people are more likely to have glasses [245]. These
shortcomings stem from the fact that the models mentioned above are not directly
trained to produce representations with disentangled visual attributes and, hence,
only limited control of the editing process can be achieved. Moreover, the quality of
the results is not production-ready because the methods which are used to project
an existing image to the representation space [2, 181, 325] of existing GAN models
tend to produce non-realistic results and sometimes even lose the identity of an
object in the input image (cf. [245]).

State-of-the-art approaches deliberately designed for controllable image edit-
ing rely on user-provided geometrical and color constraints such as hand-drawn
sketches, or the semantic layout of the entire scene or its parts [213, 283], or collag-
ing [217], i.e., when a user alters the source image by cutting and pasting some
patches from another image. The model combines the source image and coarse
user-provided input into a plausible output image. However, these methods do
not exhibit disentanglement of the high-level semantic image attributes in the
representation space, and the editing is possible only through tedious manual
changes of the input image by a user.

Style Transfer. Style Transfer [79] is an image-to-image translation task where the
goal is to change the style of an image while retaining its content. In other words,
provided an input image xc and a reference style s, the task is to extract the content
information from the input and combine it with the reference style to generate a
plausible stylization (the reference style can be provided as a single artwork image
xs or a collection of artworks {x(i)s } of the same style [238]). Therefore, to enable
effective style transfer, it is crucial to learn a disentangled representation that can
decompose and separately represent the content and style of an image.
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One of the earliest attempts to separate content from style was made by Tenen-
baum et al. [260]. They used a factor analysis technique to model an observation as
a bilinear combination of style and content vectors. However, the relationship be-
tween content and style is often more complex and cannot be captured by a simple
bilinear model. Seminal work of Gatys et al. [79] proposed to represent the content
of an image as activations extracted from intermediate convolutional layers of the
19-layer network VGG-19 [249] pretrained on ImageNet [48] and represent style as
correlations of activations from the lower layers of the VGG-19. After extracting
content representation F(xc) from the input image and a style representation G(xs)
from the reference style image, the synthetic artwork is obtained by running itera-
tive optimization procedure on the output image xo by minimizing the difference
between its content and style representations F(xo), G(xo) with F(xc) and G(xs)
correspondingly. However, such representations of image content and style are,
obviously, not independent as they are derived from one another4. Moreover, since
the same ImageNet-pretrained network is used to extract style representations
from images exhibiting different artistic styles, there is no way to adapt to the
peculiarities of particular styles. For instance, the degree of preservation of object
details depends on the level of abstractness of style (see Chapter 6) and what is
crucial for a realistic Baroque artwork of Vermeer may be completely unimportant
for a Cubist artwork of Picasso. We address this issue, neglected by the existing
approaches, in Chapter 6 by introducing an adaptive approach that untangles style
and content conditioned on a particular style.

Though recent style transfer methods [59, 117, 130, 159, 164, 270] circumvent the
prohibitively expensive optimization process of Gatys et al. [79] by approximating
its solution with Autoencoder-based models. Yet, they rely on the loss functions
exploiting the same style and content representations (as proposed in [79]), and,
therefore, have similar drawbacks.

1.2 Contributions

This dissertation makes the following contributions:

• Novel easy-to-implement framework for supervised representation learning
using divide and conquer paradigm, which significantly improves the state-
of-the-art performance of existing representation learning methods based
on DML. Our approach utilizes the representation (embedding) space more
efficiently by jointly splitting the representation space and data into smaller
sub-problems. The proposed framework increases the convergence speed
and improves the generalization since the complexity of each sub-problem is
reduced compared to the original one.

4Style representation uses the convolutional layers of the VGG-19 that precede the layers used to
compute content representation.
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• Novel self-supervised approach for visual representation learning based on
a surrogate categorization task. Weak estimates of similarities between the
samples, induced by the currently available representations, are used to define
surrogate classes as a compact group of mutually related samples. A single
optimization problem to extract batches of samples with mutually consistent
relations is proposed to mitigate the effect of conflicting relations. A CNN is
trained to consolidate the transitivity relations within and between surrogate
classes. As a result, it learns a single representation for all samples without
the need for manual annotations.

• We further boost the self-supervised representation learning by incorporat-
ing unreliable and mutually contradicting relationships between samples
(which cannot be used to build surrogate classes). Proposed method lever-
ages the local partial order of samples to surrogate classes. Self-supervised
representation learning is then formulated as a partial ordering task with
soft correspondences of all samples to surrogate classes. The representation
learning and building the surrogate classes are integrated into a single model
and are optimized jointly.

• Novel self-training approach for transferring the knowledge existing in dense
pose recognition for humans, as well as in more general object detectors
and segmenters, to the problem of dense pose recognition in other proximal
animal classes, such as chimpanzees. We (1) establish a DensePose [92]
model for the new animal which is also geometrically aligned to humans,
(2) introduce a multi-head R-CNN [100] architecture that facilitates transfer
of multiple recognition tasks between classes, (3) find which combination of
known classes can be transferred most effectively to the new animal and (4)
use self-calibrated uncertainty heads to generate pseudo-labels graded by
quality for training a model for this class. We also introduce two benchmark
datasets labeled in the manner of DensePose [92] for the class chimpanzee and
use them to evaluate our approach, showing excellent transfer performance.

• Novel self-supervised approach for the real-time, high-resolution stylization
of images and videos, which learns the representation of image content disen-
tangled from the style representation. The proposed method can learn style
representation from a collection of style images; it does not require tedious
manual labels, reducing the bias introduced by the annotators. Furthermore,
we propose a new quantitative measure for evaluating the quality of stylized
images. The approach achieves state-of-the-art results in image and video
stylization.

1.3 List of published research papers

The remaining chapters of this dissertation are based on the following publications
of the author. The sign * indicates equal contribution of the first two co-authors.
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1 Introduction

1. CliqueCNN: Deep Unsupervised Exemplar Learning
Miguel A. Bautista*, Artsiom Sanakoyeu*, Ekaterina Tikhoncheva, and Björn
Ommer
Advances in Neural Information Processing Systems (NeurIPS) 2016

2. Deep Unsupervised Similarity Learning Using Partially Ordered Sets
Miguel A. Bautista*, Artsiom Sanakoyeu*, and Björn Ommer
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017

3. Deep Unsupervised Learning of Visual Similarities
Artsiom Sanakoyeu, Miguel A. Bautista, and Björn Ommer
Pattern Recognition 78, 2018

4. A Style-aware Content Loss for Real-time HD Style Transfer
Artsiom Sanakoyeu*, Dmytro Kotovenko*, Sabine Lang, aand Björn Ommer
European Conference on Computer Vision (ECCV) 2018

5. Divide and Conquer the Embedding Space for Metric Learning
Artsiom Sanakoyeu*, Vadim Tschernezki*, Uta Büchler, and Björn Ommer
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019

6. Transferring Dense Pose to Proximal Animal Classes
Artsiom Sanakoyeu, Vasil Khalidov, Maureen S. McCarthy, Andrea Vedaldi,
and Natalia Neverova
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020

The author has also contributed to the following relevant publications. However,
they are not discussed in this thesis.

7. A Content Transformation Block for Image Style Transfer
Dmytro Kotovenko, Artsiom Sanakoyeu, Pingchuan Ma, Sabine Lang, and
Björn Ommer
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019

8. Content and Style Disentanglement for Artistic Style Transfer
Dmytro Kotovenko, Artsiom Sanakoyeu, Sabine Lang, and Björn Ommer
IEEE International Conference on Computer Vision (ICCV) 2019

9. Semi-supervised Segmentation of Salt Bodies in Seismic Images Using an
Ensemble of Convolutional Neural Networks
Yauhen Babakhin, Artsiom Sanakoyeu, and Hirotoshi Kitamura
German Conference on Pattern Recognition (GCPR) 2019

1.4 Thesis Organization

The remainder of this dissertation is organized as follows. In Chapter 2 we
introduce our framework for supervised learning of representations with DML. We
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1.4 Thesis Organization

demonstrate that it achieves state-of-the-art performance on five widely-used DML
benchmarks. Chapter 3 presents a novel self-supervised representation learning
approach based on a surrogate classification. The competitive performance of the
approach is demonstrated on detailed posture analysis and object classification
downstream tasks. In Chapter 4 we further extend this self-supervised approach
by incorporating all available data samples into the learning procedure, including
unreliable ones using their partial ordering. In Chapter 5 we introduce a self-
training approach for transferring representation learned for dense pose recognition
of humans to the problem of dense pose recognition of chimpanzees. We introduce
two datasets with densely annotated poses of chimpanzees and achieve compelling
performance on them. Next, in Chapter 6 we study learning an efficient content
representation for Artistic Style Transfer and describe a novel approach for the
real-time, high-resolution stylization of images and video. We discuss and conclude
the work done in this thesis in Chapter 7.
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2 Divide and Conquer the

Embedding Space for Metric

Learning
1

In this chapter, we introduce a novel divide and conquer framework for learn-
ing generalizable image representations using Deep Metric Learning (DML) ap-
proaches.

Deep metric learning methods learn such representation which allows to measure
similarities or distances between arbitrary groups of data points, which is a task
of paramount importance for a number of computer vision applications. Deep
metric learning has been successfully applied to image search [14, 114, 210, 281],
person/vehicle re-identification [41, 171, 311], fine-grained retrieval [198], near
duplicate detection [320], clustering [253] and zero-shot learning [210, 274].

The core idea of deep metric learning is to pull together samples with the same
class label and to push apart samples coming from different classes in the learned
embedding space. An embedding space with the desired properties is learned by
optimizing loss functions based on pairs of images from the same or different class
[14, 20, 95], triplets of images [112, 241, 281] or tuples of larger number of images [12,
115, 252, 274], which express positive or negative relationships in the dataset.

Existing Deep Metric Learning approaches strive to directly learn a single embed-
ding space for all samples from the training data distribution. The ultimate goal for
the learned embedding space is to resolve all conflicting relationships and pull sim-
ilar images closer while pushing dissimilar images further away. However, visual
data is, commonly, not uniformly distributed, but has a complex structure, where
different regions of the data distribution have different densities [115]. Data points
in different regions of the distribution are often related based on different types of
similarity such as shape, color, identity or semantic meaning. While, theoretically,
a deep neural network representation is powerful enough to approximate arbitrary
continuous functions [113], in practice this often leads to poor local minima and
overfitting. This is partially due to an inefficient usage of the embedding space [210,
212] and an attempt to capture all the aforementioned types of visual similarity
directly by fitting a single embedding space to all the training data [165, 166, 231].

1This chapter is based on joint work [240] with Vadim Tschernezki, Uta Büchler, and Björn Ommer,
originally presented at CVPR 2019. References to prior work (such as “existing approaches”,
“recent methods”, or “state-of-the-art methods”) should be read with this context in mind.
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2 Divide and Conquer the Embedding Space for Metric Learning

Figure 2.1: Evaluation of different numbers of learners. We train our model with K =
1, 2, 3, 4, 8 and 16 learners on the Stanford Online Products dataset [210] and
report the change of the Recall@1 score during training. An increase in the
number of learners leads to higher Recall@1. The best performance is achieved
with K = 8.

The problems stated above motivate an approach which will use the embedding
space in a more profound way by learning a separate embedding subspace for
different regions of the data distribution. We propose a novel deep metric learning
approach, inspired by the well-known divide and conquer algorithm. We explicitly
split the embedding space and the data distribution into multiple parts given
the network representation and learn a separate embedding subspace for each
part of the data distribution. Different subspaces are learned on non-overlapping
parts of the training data, but all of them share the same feature representation
from the previous layer of the Convolutional Neural Network (CNN). The final
embedding space is seamlessly composed by concatenating the solutions on each
of the non-overlapping subspaces. See Fig. 2.2 for an illustration.

Our approach can be utilized as an efficient drop-in replacement for the final
linear layer commonly used for learning embeddings in the existing deep met-
ric learning approaches, regardless of the loss function used for training. We
demonstrate a consistent performance boost when applying our approach to the
widely-used triplet loss [241] and more complex state-of-the-art metric learning
losses such as Proxy-NCA [198] and Margin loss [296]. By using the proposed
approach, we achieve new state-of-the-art performance on five benchmark datasets
for retrieval, clustering and re-identification: CUB200-2011 [277], CARS196 [148],
Stanford Online Products [210], In-shop Clothes [174], and PKU VehicleID [171]. The
source code is available on github2.

2https://github.com/CompVis/metric-learning-divide-and-conquer
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2.1 Related work

Figure 2.2: Pipeline of our approach. We first cluster the data in the embedding space in
K groups and assign a separate subspace (learner) of the embedding layer to
every cluster. During training, every learner only sees the samples assigned to
the corresponding cluster.

2.1 Related work

Metric learning has been of major interest for the vision community since its early
beginnings, due to its broad applications including object retrieval [210, 274, 295],
zero-shot and single-shot learning [210, 274], keypoint descriptor learning [248], face
verification [41] and clustering [106]. With the advent of CNNs, several approaches
have been proposed for supervised Distance Metric Learning. Some methods use
pairs [313] or triplets [241, 281] of images. Others use quadruplets [252, 274] or
impose constraints on tuples of larger sizes like Lifted Structure [210], n-pairs [252]
or poset loss [12].

Using a tuple of images as training samples yields a huge amount of training data.
However, only a small portion of the samples among all Np possible tuples of size p
is meaningful and provides a learning signal. A number of recent works tackle the
problem of hard and semi-hard negative mining which provides the largest training
signal by designing sampling strategies [82, 99, 122, 296, 319]. Existing sampling
techniques, however, require either running an expensive, quadratic on the number
of data points preprocessing step for the entire dataset and for every epoch [82,
99], or lack global information while having a local view on the data based on a
single randomly-drawn mini-batch of images [241, 252, 296]. On the contrary, our
approach efficiently alleviates the problem of the abundance of easy samples, since
it jointly splits the embedding space and clusters the data using the embedding
space learned so far. Hence, samples inside one cluster will have smaller distances
to one another than to samples from another cluster, which serves as a proxy to
the mining of more meaningful relationships [99, 241]. For further details of our
approach see Sec. 2.2.

Recently, a lot of research efforts have been devoted to designing new loss
functions [198, 230, 252, 253, 274, 280]. For example, Facility Location [253] optimizes
a cluster quality metric, Histogram loss [274] minimizes the overlap between the
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2 Divide and Conquer the Embedding Space for Metric Learning

Figure 2.3: Qualitative image retrieval results on PKU VehicleID [171]. We show 5 nearest
neighbors per randomly chosen query image given our trained features. The
queries and retrieved images are taken from the test set of the dataset.

distribution of positive and negative distances. Kihyuk Sohn proposed in [252] the
N-pairs loss which enforces a softmax cross-entropy loss among pairwise similarity
values in the batch. The Proxy-NCA loss, presented in [198] computes proxies
for the original points in the dataset and optimizes the distances to these proxies
using NCA [230]. Our work is orthogonal to these approaches and provides a
framework for Distance Metric Learning independent on the choice of a particular
loss function.

Another line of work in deep metric learning which is more related to our ap-
proach is ensemble learning [76, 94, 212, 311]. Previous works [212, 311] employ a
sequence of ”learners” with increasing complexity and mine samples of different
complexity levels for the next learners using the outputs of the previous learners.
HDC [311] uses a cascade of multiple models of a specific architecture, A-BIER [212]
applies a gradient boosting learning algorithm to train several learners inside a
single network in combination with an adversarial loss [78, 87]. The key difference
of the aforementioned approaches to our approach is that we split the embedding
space and cluster the data jointly, so each ”learner” will be assigned to the specific
subspace and corresponding portion of the data. The ”learners” are independently
trained on non-overlapping chunks of the data which reduces the training complex-
ity of each individual learner, facilitates the learning of decorrelated representations
and can be easily parallelized. Moreover, our approach does not introduce extra
parameters during training and works in a single model. It does not require any
additional loss functions and can be applied to any existing network architecture.
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2.2 Approach

Figure 2.4: Qualitative image retrieval results on the test set of Stanford Online Prod-
ucts [210]. We randomly choose 5 query images and show 5 nearest neighbors
per query image given the features of our trained model.

2.2 Approach

The main intuition behind our approach is the following: Solving bigger problems
is usually harder than solving a set of smaller ones. We propose an effective and
easily adaptive divide and conquer algorithm for deep metric learning. We divide
the data into multiple groups (sub-problems) to reduce the complexity and solve
the metric learning problem on each sub-problem separately. Since we want the
data partitioning to be coupled with the current state of the embedding space, we
cluster the data in the embedding space learned so far. Then we split the embedding
layer of the network into slices. Each slice of the embedding layer represents an
individual learner. Each learner is assigned to one cluster and operates in a certain
subspace of the original embedding space. At the conquering stage we merge the
solutions of the sub-problems, obtained by the individual learners, to get the final
solution. We describe each step of our approach in details in Sec. 2.2.2 and 2.2.3.

2.2.1 Preliminaries

We denote the training set as X = {x1, . . . , xn} ⊂ X , where X is the original RGB
space, and the corresponding class labels as Y = {y1, . . . , yn}. A Convolutional
Neural Network (CNN) learns a non-linear transformation of the image into an m-
dimensional deep feature space φ(·; θφ) : X → Rm, where θφ is the set of the CNN
parameters. For brevity, we will use the notations φ(xi; θφ) and φi interchangeably.

To learn a mapping into the embedding space, a linear layer f (·; θ f ) : Rm → Rd

with d neurons is typically appended to the CNN, where θ f denotes the parameters
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2 Divide and Conquer the Embedding Space for Metric Learning

Figure 2.5: Qualitative image retrieval results on In-shop clothes [174]. We randomly choose
5 query images from the query set of the In-shop clothes dataset and show 5
nearest neighbors per query image given our trained features. The retrieved
images are taken from the gallery set.

of this layer. f (·; θ f ) is often normalized to have a unit length for training stability
[241]. The goal of metric learning is to jointly learn φ and f in such a way that
( f ◦ φ)(x; θφ, θ f ) maps similar images close to one another and dissimilar ones far
apart in the embedding space. Formally, we define a distance between two data
points in the embedding space as

d f (xi, xj) = || f (φi)− f (φj)||2. (2.1)

For DML, one can use any loss function with options such as [198, 210, 241, 252,
274, 296]. Our framework is independent of the choice of the loss function. In this
chapter we experiment with three different losses: Triplet loss [241], Proxy-NCA
loss [198] and Margin loss [296]. For simplicity, we will demonstrate our approach
in this section on the example of triplet loss, which is defined as

ltriplet(a, p, n; θφ, θ f ) =
[
d f (a, p)2 − d f (a, n)2 + α

]
+

, (2.2)

where [·]+ denotes the positive part and α is the margin. The triplet loss strives to
keep the positive data point p closer to the anchor point a than any other negative
point n. For brevity we omit the definitions of other losses, but we refer the
interested reader to the original works [198, 296].
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2.2 Approach

Figure 2.6: Qualitative image retrieval results on the test set of CARS196 dataset [148].
We randomly choose 5 query images and show 5 nearest neighbors per query
retrieved using our trained features.

2.2.2 Division of the embedding space

We begin with the division stage of our approach. To reduce the complexity of the
problem and to utilize the entire embedding space more efficiently we split the
embedding dimensions and the data into multiple groups. Each learner will learn
a separate subspace of the original embedding space using only a part of the data.

Splitting the data. Let K be the number of sub-problems. We group all data points
{x1, . . . , xn} according to their pairwise distances in the embedding space into K
clusters {Ck|1 ≤ k ≤ K} with K-means [183].

Splitting the embedding. Next, we define K individual learners within the em-
bedding space by splitting the embedding layer of the network into K consecutive
slices. Formally, we decompose the embedding function f (·; θ f ) into K functions
{f1, . . . , fK}, where each fk maps the input into the d/K-dimensional subspace of
the original d-dimensional embedding space: fk(·; θfk) : Rm → Rd/K. f1 will map
into the first d/K dimensions of the original embedding space, f2 into the second
d/K dimensions and so on. Please see Fig. 2.2 for an illustration. Note that the
number of the model parameters stays constant after we perform the splitting of
the embedding layer, since the learners share the underlying representation.

2.2.3 Conquering stage

In this section, we first describe the step of solving individual problems. Then, we
outline the merging step, where the solutions of sub-problems are combined to
form the final solution.

Training. After the division stage, every cluster Ck is assigned to a learner fk,
1 ≤ k ≤ K. Since all learners reside within a single linear embedding layer and
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2 Divide and Conquer the Embedding Space for Metric Learning

share the underlying feature representation, we train them jointly in an alternating
manner. In each training iteration only one of the learners is updated. We uniformly
sample a cluster Ck, 1 ≤ k ≤ K and draw a random mini-batch B from it. Then, a
learner fk minimizes its own loss defined as follows:

Lθφ,θfk
k =

(a,p,n)∼B

[
dfk(a, p)2 − dfk(a, n)2 + α

]
, (2.3)

where triplet (a, p, n) ∈ B ⊂ Ck denotes the triplets sampled from the current mini-
batch, and dfk is the distance function defined in the subspace of the k-th learner.
As described in Eq. (2.3) each backward pass will update only the parameters of the
shared features θφ and the parameters of the current learner θfk . Motivated by the
fact that the learned embedding space is improving during the time, we update the
data partitioning by re-clustering every T epochs using the full embedding space.
The full embedding space is composed by simply concatenating the embeddings
produced by the individual learners.

Merging the solutions. Finally, following the divide and conquer paradigm, after
individual learners converge, we merge their solutions to get the full embedding
space. Merging is done by joining the embedding layer slices, corresponding to
the K learners, back together. After this, we fine-tune the embedding layer on the
entire dataset to achieve the consistency between the embeddings of the individual
learners. An overview of the full training process of our approach can be found in
Algorithm 1.

2.3 Experiments

In this section, we first introduce the datasets we use for evaluating our approach
and provide afterwards additional details regarding the training and testing of our
framework. We then show qualitative and quantitative results which we compare
with the state-of-the-art by measuring the image retrieval quality and clustering
performance. The ablation study in subsection 2.3.4 provides then some inside into
our metric learning approach.

2.3.1 Datasets

We evaluate the proposed approach by comparing it with the state-of-the-art on
two small benchmark datasets (CARS196 [148], CUB200-2011 [277]), and on three
large-scale datasets (Stanford Online Products [210], In-shop Clothes [174], and PKU
VehicleID [171]). For assessing the clustering performance we utilize the normalized
mutual information score [242] NMI(Ω, C) = 2·I(Ω,C)

H(Ω)+H(C)
, where Ω denotes the

ground truth clustering and C the set of clusters obtained by K-means. Here I
represents the mutual information and H the entropy. For the retrieval task we
report the Recall@k metric [126].
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2.3 Experiments

Algorithm 1 Training a model with our approach

Input: X, f ,θφ, θ f ,K,T . data, linear layer, CNN weights,
weights of f , # clusters, re-cluster freq.

. cluster affiliation ∀xi ∈ X
{f1, . . . fK} ← SplitEmbedding( f ) . set of learners
epoch← 0
while Not Converged do

if epoch mod T == 0 then
f ← ConcatEmbedding({f1, . . . fK})
emb← ComputeEmbedding(X, θφ, θ f )
{C1, . . . , CK} ← ClusterData(emb, K)
{f1, . . . fK} ← SplitEmbedding( f )

end if
repeat

Ck ∼ {C1, . . . , CK} . sample cluster
b← GetBatch(Ck) . draw mini-batch
Lk ← FPass(b, θφ, θfk) . compute loss of learner fk (Eq. (2.3))
θφ, θfk ← BPass(L, θφ, θfk) . update weights

until Epoch completed
epoch← epoch + 1

end while
f ← ConcatEmbedding({f1, . . . fK})
θφ, θ f ← Finetune(X, θφ, θ f , f )

Output: θφ, θ f

Stanford Online Products [210] is one of the largest publicly available image
collections for evaluating metric learning methods. It consists of 120, 053 images
divided into 22, 634 classes of online products, where 11, 318 classes (59, 551 images)
are used for training and 11, 316 classes (60, 502 images) for testing. We follow
the same evaluation protocol as in [210]. We calculate Recall@k score for k =
1, 10, 100, 1000 for evaluating the image retrieval quality and the NMI metric for
appraising the clustering performance, respectively.

CARS196 [148] contains 196 different types of cars distributed over 16,185 images.
The first 98 classes (8, 054 images) are used for training and the other 98 classes
(8, 131 images) for testing. We train and test on the entire images without using
bounding box annotations.

CUB200-2011 [277] is an extended version of the CUB200 dataset which consolidates
images of 200 different bird species with 11,788 images in total. The first 100 classes
(5, 864 images) are used for training and the second 100 classes (5, 924 images)
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2 Divide and Conquer the Embedding Space for Metric Learning

R@k 1 10 100 1000 NMI

Histogram [274] 63.9 81.7 92.2 97.7 -
Bin. Deviance [274] 65.5 82.3 92.3 97.6 -
Triplet Semihard [253] 66.7 82.4 91.9 - 89.5
LiftedStruct [210] 63.0 80.5 91.7 97.5 87.4
FacilityLoc [253] 67.0 83.7 93.2 - -
N-pairs [252] 67.7 83.7 93.0 97.8 88.1
Angular [280] 70.9 85.0 93.5 98.0 88.6
DAML (N-p) [57] 68.4 83.5 92.3 - 89.4
HDC [311] 69.5 84.4 92.8 97.7 -
DVML [169] 70.2 85.2 93.8 - 90.8
BIER [211] 72.7 86.5 94.0 98.0 -
ProxyNCA [198] 73.7 - - - -
A-BIER [212] 74.2 86.9 94 97.8 -
HTL [82] 74.8 88.3 94.8 98.4 -
Margin baseline [296] 72.7 86.2 93.8 98.0 90.7
Ours (Margin) 75.9 88.4 94.9 98.1 90.2

Table 2.1: Recall@k for k = 1, 10, 100, 100 and NMI on Stanford Online Products [210]

for testing. We train and test on the entire images without using bounding box
annotations.

In-shop Clothes Retrieval [174] contains 11, 735 classes of clothing items with
54, 642 images. We follow the evaluation protocol of [174] and use a subset of 7, 986
classes with 52, 712 images. 3, 997 classes are used for training and 3, 985 classes for
testing. The test set is partitioned into query set and gallery set, containing 14, 218
and 12, 612 images, respectively.

PKU VehicleID [171] is a large-scale vehicle dataset that contains 221, 736 images
of 26, 267 vehicles captured by surveillance cameras. The training set contains
110, 178 images of 13, 134 vehicles and the testing set comprises 111, 585 images of
13, 133 vehicles. We evaluate on 3 test sets of different sizes as defined in [171]. The
small test set contains 7, 332 images of 800 vehicles, the medium test set contains
12, 995 images of 1600 vehicles, and the large test set contains 20, 038 images of 2400
vehicles. This dataset has smaller intra-class variation, but it is more challenging
than CARS196, because different identities of vehicles are considered as different
classes, even if they share the same car model.

2.3.2 Implementation Details

We implement our approach by closely following the implementation of Wu et
al. [296] based on ResNet-50 [102]. We use an embedding of size d = 128 and an
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2.3 Experiments

R@k 1 2 4 8 NMI

Triplet Semihard [253] 51.5 63.8 73.5 82.4 53.4
LiftedStruct [210] 48.3 61.1 71.8 81.1 55.1
FacilityLoc [253] 58.1 70.6 80.3 87.8 59.0
SmartMining [99] 64.7 76.2 84.2 90.2 -
N-pairs [252] 71.1 79.7 86.5 91.6 64.0
Angular [280] 71.4 81.4 87.5 92.1 63.2
ProxyNCA [198] 73.2 82.4 86.4 88.7 64.9
HDC [311] 73.7 83.2 89.5 93.8 -
DAML (N-pairs) [57] 75.1 83.8 89.7 93.5 66.0
HTG [319] 76.5 84.7 90.4 94 -
BIER [211] 78.0 85.8 91.1 95.1 -
HTL [82] 81.4 88.0 92.7 95.7 -
DVML [169] 82.0 88.4 93.3 96.3 67.6
A-BIER [212] 82.0 89.0 93.2 96.1 -
Margin baseline [296] 79.6 86.5 91.9 95.1 69.1
Ours (Margin) 84.6 90.7 94.1 96.5 70.3

DREML [301] 86.0 91.7 95.0 97.2 76.4

Table 2.2: Recall@k for k = 1, 2, 4, 8 and NMI on CARS196 [148]

input image size of 224× 224 [102] for all our experiments. The embedding layer is
randomly initialized. All models are trained using Adam [145] optimizer with the
batch size of 80 for Stanford Online Products and In-shop Clothes datasets, and
128 for the other datasets. We resize the images to 256 and apply random crops
and horizontal flips for data augmentation. For training our models we set the
number of learners K = 4 for CUB200-2011 and CARS196 due to their small size,
and K = 8 for all the other datasets.

We update the data partitioning by re-clustering every T epochs using the full
embedding space, composed by concatenating the embeddings produced by the
individual learners. We have noticed that our approach is not sensitive to the values
of T in the range between 1 and 10. We set T = 2 for all experiment, since the
value alteration did not lead to significant changes in the experimental results. To
maintain consistency, each learner is associated to the cluster, which is most similar
to the cluster assigned to this learner in the previous iteration (i.e. in epoch t− T).
This amounts to solving a linear assignment problem where similarity between
clusters is measured in terms of IoU of points belonging to the clusters.

Similar to [241, 296] we initialize Margin loss with β = 1.2 and Triplet loss with
α = 0.2. Mini-batches are sampled following the procedure defined in [241, 296]
with m = 4 images per class per mini-batch for Margin loss [296] and Triplet loss
[241], and uniformly for Proxy-NCA [198]. During the clustering (Sec. 2.2.2) and
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2 Divide and Conquer the Embedding Space for Metric Learning

R@k 1 2 4 8 NMI

LiftedStruct [210] 46.6 58.1 69.8 80.2 56.2
FacilityLoc [253] 48.2 61.4 71.8 81.9 59.2
SmartMining [99] 49.8 62.3 74.1 83.3 -
Bin. Deviance [274] 52.8 64.4 74.7 83.9 -
N-pairs [252] 51.0 63.3 74.3 83.2 60.4
DVML [169] 52.7 65.1 75.5 84.3 61.4
DAML (N-pairs) [57] 52.7 65.4 75.5 84.3 61.3
Histogram [274] 50.3 61.9 72.6 82.4 -
Angular [280] 54.7 66.3 76.0 83.9 61.1
HDC [311] 53.6 65.7 77.0 85.6 -
BIER [211] 55.3 67.2 76.9 85.1 -
HTL [82] 57.1 68.8 78.7 86.5 -
A-BIER [212] 57.5 68.7 78.3 86.2 -
HTG [319] 59.5 71.8 81.3 88.2 -

Triplet Semihard [253] 42.6 55.0 66.4 77.2 55.4
Triplet Semihard baseline* 53.1 65.9 76.8 85.3 60.3
Ours (Triplet Semihard) 55.4 66.9 77.5 86.5 61.9

ProxyNCA [198] 49.2 61.9 67.9 72.4 64.9
ProxyNCA baseline* 58.7 70.0 79.1 87.0 62.5
Ours (ProxyNCA) 61.8 73.1 81.8 88.2 65.7

Margin baseline [296] 63.6 74.4 83.1 90.0 69.0
Ours (Margin) 65.9 76.6 84.4 90.6 69.6

DREML [301] 63.9 75.0 83.1 89.7 67.8

Table 2.3: Recall@k for k = 1, 2, 4, 6, 8 and NMI on CUB200-2011 [277]. * denotes our own
implementation based on ResNet-50 with d = 128.

test phase, an image embedding is composed by concatenating the embeddings of
individual learners.

The source code is available at GitHub.

2.3.3 Results

We now compare our approach to the state-of-the-art. From Tables 2.1, 2.2, 2.3, 2.4
and 2.5 we can see that our method with Margin loss [296] outperforms existing
state-of-the-art methods on all 5 datasets, proving its wide applicability. Note
that we use a smaller embedding size of d = 128 instead of 512 employed by
runner-up approaches HTL [82], A-BIER [212], BIER [211], DVML [169], DAML
[57], and Angular loss [280]; HDC [311] uses a 384-dimensional embedding layer.
Moreover, we compare our results to the deep ensembles approach DREML [301],
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R@k 1 10 20 30 50 NMI

FashionNet [174] 53.0 73.0 76.0 77.0 80.0 -
HDC [311] 62.1 84.9 89.0 91.2 93.1 -
BIER [211] 76.9 92.8 95.2 96.2 97.1 -
HTG [319] 80.3 93.9 95.8 96.6 97.1 -
HTL [82] 80.9 94.3 95.8 97.2 97.8 -
A-BIER [212] 83.1 95.1 96.9 97.5 98.0 -
Margin baseline* [296] 82.6 94.8 96.2 97.0 97.7 87.8
Ours (margin) 85.7 95.5 96.9 97.5 98.0 88.6

DREML [301] 78.4 93.7 95.8 96.7 - -

Table 2.4: Recall@k for k = 1, 10, 20, 30, 50 and NMI on In-shop Clothes [174]. * denotes our
own implementation based on ResNet-50 with d = 128.

which trains an ensemble of 48 ResNet-18 [102] networks with a total number of
537M trainable parameters. Our model has only 25.5M trainable parameters and
still outperforms DREML [301] on CUB200-2011 and In-shop Clothes datasets by a
large margin.

We demonstrate the results of our approach with three different losses on
CUB200-2011: Triplet [241], Proxy-NCA [198] and Margin loss [296]. Our approach
improves the Recall@1 performance by at least 2.1% in each of the experiments
(see Tab. 2.3). This confirms that our approach is universal and can be applied to a
variety of metric learning loss functions. We noticed that it shows especially large
improvements on large-scale datasets such as on PKU VehicleID, where we improve
by 3.6% over the baseline with Margin loss [296] and surpass the state-of-the-art by
1% in terms of Recall@1 score on the large test set. We attribute this success on such
a challenging dataset to the more efficient exploitation of large amounts of data
due to dividing it between different learners which operate on non-overlapping
subspaces of the entire embedding space.

In addition to the quantitative results, we show in Figure 2.3,2.4,2.5 and 2.6
qualitative image retrieval results on CUB200-2011, Stanford Online Products, In-
shop clothes, and Cars196. Note that our model is invariant to viewpoint and
daylight changes.

2.3.4 Ablation Study

We perform several ablation experiments to demonstrate the effectiveness of the
proposed method and evaluate the different components of our contribution. We
use the Stanford Online Products dataset and train all models with Margin loss
[296] for 80 epochs.

First, we analyze the choice of the number of learners K. As can be seen in
Fig. 2.1, Recall@1 significantly increased already with K = 2. The best result is
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Figure 2.7: Natural hard negative mining. During training, we only sample tuples (e.g.,
pairs or triplets) from the same cluster. The expected value of the distance
between a negative sample and an anchor within a cluster is lower than the
expected value when the data points belong to different clusters. Our approach
naturally finds hard negative samples without explicitly performing a hard
negative mining procedure.

Figure 2.8: Intra-cluster and inter-cluster distributions of distances for negative pairs. Red
histogram shows the distribution of the pairwise distances of samples having
different class labels but from the same cluster (intra-cluster); green histogram
shows the distribution of the pairwise distances of samples having different
class labels and drawn from different clusters (inter-cluster). Negative pairs
within one cluster have lower distances and are harder on average.

achieved with K = 8, where each learner operates in a 16-dimensional embedding
subspace. Increasing the number of learners from K > 1 on, results in faster
convergence and better local optima.
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Split Size→ Small Medium Large

R@k 1 5 1 5 1 5

Mixed Diff+CCL [171] 49.0 73.5 42.8 66.8 38.2 61.6
GS-TRS loss [63] 75.0 83.0 74.1 82.6 73.2 81.9
BIER [211] 82.6 90.6 79.3 88.3 76.0 86.4
A-BIER [212] 86.3 92.7 83.3 88.7 81.9 88.7
Margin baseline* [296] 85.1 91.4 82.9 88.9 79.2 88.4
Ours (margin) 87.7 92.9 85.7 90.4 82.9 90.2

DREML [301] 88.5 94.8 87.2 94.2 83.1 92.4

Table 2.5: Recall@k for k = 1, 5 on the small, medium and large PKU VehicleID [171] dataset.
* denotes our own implementation based on ResNet-50 with d = 128.

Next, we study the effect of clustering the data. In Tab. 2.6 we see that substi-
tuting K-means clustering in the embedding space with random data partitioning
significantly degrades the performance. On the other hand, what happens if we
use K-means clustering in the embedding space, but do not split the embedding f
into K subspaces f1, . . . , fK during training? I.e., we perform regular training but
with sampling from clusters. From Tab. 2.6 we see that it leads to a performance
drop compared to the proposed approach, however it is already better than the
baseline. This is due to the fact that drawing mini-batches from the clusters yields
harder training samples compared to drawing mini-batches from the entire dataset.
The expectation of the distance between a negative pair within the cluster is lower
than the expectation of the distance between a negative pair randomly sampled
from the entire dataset, as visually depicted on Fig. 2.7 and Fig. 2.8. This shows
that: a) sampling from clusters provides a stronger learning signal than regular
sampling from the entire dataset, b) to be able to efficiently learn from harder sam-
ples we need an individual learner for each cluster, which significantly reduces the
complexity of the metric learning task. We also substitute K-means clustering with
the fixed data partitioning, based on the ground truth labels, which are manually
grouped according to semantic similarity (see ”GT labels grouping” in Tab. 2.6).
We recognize that the use of a flexible clustering scheme, which depends on the
data distribution in the embedding space, leads to better performance than using
class labels.

Runtime complexity. Splitting the embedding space into subspaces and training
K independent learners reduces the time required for a single forward and back-
ward pass, since we only use a d/K-dimensional embedding instead of the full
embedding. We perform K-means clustering every T epochs. We use the K-means
implementation from the Faiss library [129] which has an average complexity of
O(Kni), where n is the number of samples, and i is the number of iterations. This
adds a neglectable overhead compared to the time required for a full forward and
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R@k 1 10 100 1000

Baseline [296] 72.7 86.2 93.8 98.0
K-means in the embedding space,

no embedding splitting 75.0 87.6 94.2 97.8

Random data partition 73.2 85.8 93.4 97.6
GT labels grouping 74.5 87.1 93.8 97.6
K-means in the embedding space 75.9 88.4 94.9 98.1

Table 2.6: Evaluation of different data grouping methods on Stanford Online Products [210]
with K = 8 and Margin loss [296].

Figure 2.9: Representative images for the individual learners and their corresponding
subspaces. The model was trained on the Stanford Online Products dataset
with K = 8. Best viewed zoomed in.

backward pass of all images in the dataset. For example, in case of T = 2 the
clustering will add ≈ 25% overhead and in case of T = 8 only ≈ 6.25%.

Ablation study of individual learners

Our approach facilitates the learning of decorrelated representations of individual
learners. To show this, we conduct an additional ablation study where we evaluate
the performance of individual learners and compute the correlation between their
embeddings. Here we use the Stanford Online Products dataset [210] and train our
model with Margin loss [296], K = 8 and embedding size d = 128.
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Baseline Ours Embedding dimensions

Learner 1 37.0 29.6 1..16
Learner 2 37.0 29.7 17..32
Learner 3 36.5 29.5 33..48
Learner 4 36.5 29.4 49..64
Learner 5 36.3 29.1 65..80
Learner 6 37.4 29.7 81..96
Learner 7 36.7 29.4 97..112
Learner 8 37.1 29.9 113..128
Concatenation of all (↑) 72.7 75.9 1..128

Correlation coeff. (↓) 0.0602 0.0498 -

Table 2.7: Evaluation of the individual learners. We calculated Recall@1 for every indi-
vidual learner on the entire test set of Stanford Online Products [210]. The last
column shows the indices of the corresponding dimensions of the embedding
space assigned to the learners. The individual learners of our model yield signifi-
cantly higher Recall@1 than the baseline model when they are concatenated and
evaluated all together (“Concatenation of all”), since they learn less correlated
representations.

We computed Recall@1 on the entire test set for every individual learner, each of
which operates in a 16-dimensional embedding subspace. However, the baseline
model was trained with only one learner operating in the embedding space with
128 dimensions. Hence, for comparison with the learners of our model, we split the
embedding of the baseline model on 8 non-overlapping slices of 16 dimensions each
and evaluate them separately. In Tab. 2.7 we can see that each individual learner
trained using our approach is weaker in average than slices of the baseline model
embedding. However, when we concatenate the embeddings of all individual
learners together they yield significantly higher Recall@1 than the baseline model
(3.2% higher in absolute values). In Fig. 2.10 we also show how the performance
changes when we use together only 1, 2, . . . 7 or all 8 learners for evaluation:
one learner corresponds to 16 out of 128 dimensions, two learners to 32 out of
128 dimensions and so on; 8 learners correspond to all 128 dimensions. We
observe a larger gain compared to the baseline when more learners are used
together for evaluation. This shows that the learners trained by our approach learn
complementary features.

Moreover, in Tab. 2.7 we directly computed the correlation coefficient between
the embedding produced by different learners. The correlation coefficient between
the learners in our model is lower than between the slices of the baseline model
embedding. This evidence supports our claim that the learners proposed by our
approach learn less correlated features and, hence, utilize the embedding space in
a more efficient way.
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Figure 2.10: Evaluation of the individual learners. We trained our model with K = 8
learners and embedding size d = 128 on the Stanford Online Products dataset
[210]. The plots show the the Recall@k score when we use only the first m
out of 128 dimensions of the embedding layer (m = {16, 32, . . . , 128}) for
evaluation. Adding another 16 dimensions corresponds to using one more
learner fm/16 during the evaluation of our model. In case of the baseline model
we do not have any learners, but for a fair comparison we also use only the
first m dimensions of the embedding layer. We see a higher performance of our
approach compared to the baseline when more dimensions are used together,
which shows that the individual learners in our model produce less correlated
embeddings.

To visualize what is captured in each embedding subspace, in Fig. 2.9 we show
representative images for different learners. Every row shows 10 query images,
which are the easiest in terms of recall for one learner (R@1 = 1) but extremely
difficult (R@30 = 0) for any other learner. We can see that every subspace has its
own abstract ”specialization”. The 1st focuses on the electrical appliances, the 2nd –
on furniture, the 3rd – on plates and mugs, etc.

2.4 Conclusion

In this chapter, we introduced a simple and efficient divide and conquer approach
for Deep Metric Learning, which divides the data in K clusters and assigns them to
individual learners, constructed by splitting the network embedding layer into K
non-overlapping slices. We described the procedure for joint training of multiple
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learners within one neural network and for combining partial solutions into the
final representation. The proposed approach is easy to implement and can be used
as an efficient drop-in replacement for a linear embedding layer commonly used in
the existing Deep Metric Learning approaches independent on the choice of the loss
function. The experimental results on CUB200-2011 [277], CARS196 [148], Stanford
Online Products [210], In-shop Clothes [174], and PKU VehicleID [171] show that
our approach significantly outperforms the state-of-the-art on all the datasets.
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3 Unsupervised Representation

Learning using Surrogate

Classification
1

As was shown in Chapter 2, one of the properties of learned visual representations
is that they induce similarity (or distance) metric in the visual domain, enabling
comparisons between images. Such similarities in the visual domain play a central
role for numerous computer vision tasks which range across different levels of
abstraction, from low-level image processing to high-level object recognition or
human pose estimation. In this chapter, we go beyond supervised learning of
representations studied in Chapter 2 and present an unsupervised approach. To
design such an approach, we will primarily rely on (dis-)similarities between images.
Since the visual representations induce a similarity measure between images,
we will use terms similarity learning and representaion learning interchangeably
throughout this thesis.

Similarities have been usually obtained as a result of representations learned
for category-level recognition tasks, where the samples are attributed to discrete
categories. However, the large intra-class variability of visual categories has recently
spurred exemplar methods [103, 187], which split the category-level model into
simpler sub-tasks for each sample. Therefore, separate exemplar classifiers are
trained by learning the similarities of individual exemplars against a large set of
negatives. This paradigm of exemplar learning has been applied with successful
results in problems like object recognition [61, 187], instance retrieval [50, 231], and
grouping [97]. Learning visual similarities has been also of particular importance for
posture analysis [73] and video parsing [216], where exploiting both the appearance
[51] and the temporal domain [285] has proven useful.

Throughout the numerous methods for learning visual similarities, supervised
techniques have been of particular interest in the computer vision field. These
supervised techniques have therefore followed different formulations either as rank-
ing [298], regression [62], and classification [216] problems. Furthermore, with the
recent advent of Convolutional Neural Networks (CNNs), two stream architectures
[313] and ranking losses [281] have shown great improvements over similarities
based on hand-crafted features. Nevertheless, these performance improvements

1This chapter is based on joint work [236] with Miguel A. Bautista and Björn Ommer, originally
published in Pattern Recognition 78 (2018), which is an extension of our NeurIPS 2016 paper [11].
References to prior work (such as “existing approaches”, “recent methods”, or “state-of-the-art
methods”) should be read with this context in mind.
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obtained by CNNs come at the cost of requiring millions of samples of supervised
training data or at least the fine-tuning [51] on large labeled datasets such as Pascal
VOC [67]. Even though the amount of accessible image data is growing at an
ever increasing rate, supervised labeling of image similarities is extremely costly.
In addition to the difficulty of labeling a similarity metric, not only similarities
between images are important, but also between objects and their parts. Annotating
the fine-grained similarities between all these entities is hopelessly complex, in
particular for the large datasets typically used for training CNNs.

Unsupervised deep learning of similarities that does not require any labels for
pre-training or fine-tuning is, therefore, of great interest to the vision community.
This way we can utilize large image datasets without being limited by the need
for costly manual annotations. However, CNNs for exemplar-based learning have
been rare [55] due to limitations resulting from the widely used cross-entropy
loss. The learning task of Dosovitskiy et al. [55] suffers from only a single positive
instance, it is highly unbalanced with many more negatives, and the relationships
between samples are unknown, cf. Sec. 3.2. Consequentially, Stochastic gradient
descent (SGD) gets corrupted and has a bias towards negatives, thus forfeiting the
benefits of deep learning.

Our approach overcomes these limitations by formulating similarity learning
as an exemplar grouping and a surrogate classification problem using CNNs.
Typically, at the beginning, only a few local estimates of (dis-)similarities are
easily available (i.e. pairs of samples that are highly similar (near duplicates)
or that are very distant). Most of the initial similarities are, however, unknown
or non-transitive, i.e. mutually contradicting. To nevertheless define balanced
classification tasks suited for CNN training, we formulate an optimization problem
that builds training batches for the CNN by selecting groups of compact cliques
so that all cliques in a batch are mutually distant. Thus for all samples of a batch
(dis-)similarity is defined—they either belong to the same compact clique or are far
away and belong to different cliques. However, pairs of samples with no reliable
similarities end up in different batches so they do not yield false training signal
for SGD. Classifying if a sample belongs to a clique serves as a pretext task for
learning exemplar similarity. Training the network then implicitly reconciles the
transitivity relations between samples in different batches. Thus, the learned CNN
representations impute similarities that were initially unavailable and generalize
them to unseen data. Furthermore, to incorporate temporal context in our model,
we introduce a Local Temporal Pooling (LTP) strategy that models how similarities
between exemplars change over short periods of time.

In the experimental evaluation, the proposed approach significantly improves
over state-of-the-art approaches for posture analysis and retrieval by learning a
general feature representation for a human pose that can be transferred across
datasets.
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3.1 Related Work

The Exemplar Support Vector Machine (Exemplar-SVM) has been one of the driving
methods for exemplar-based learning [187]. Each Exemplar-SVM classifier is defined
by a single positive instance and a large set of negatives. To improve performance,
Exemplar-SVMs require several rounds of hard negative mining, increasing greatly
the computational cost of this approach. To circumvent this high computational
cost, Hariharan et al. [97] proposes to train Linear Discriminant Analysis (LDA) over
Histogram of Oriented Gradients (HOG) features [97]. LDA whitened HOG features
with the common covariance matrix estimated for all the exemplars removes
correlations between the HOG features, which tend to amplify the background of
the image.

Recently, several CNN approaches have been proposed for supervised similarity
learning using either pairs [313], or triplets [281] of images. However, supervised
formulations for learning similarities require that the supervisory information
scales quadratically for pairs of images, or cubically for triplets. This results in very
large training times.

The literature on exemplar-based learning in CNNs is very scarce. In [55] the
authors of Exemplar-CNN tackle the problem of unsupervised feature learning. A
patch-based categorization problem is designed by randomly extracting patch for
each image in the training set and defining it as a surrogate class. Hence, since this
approach does not take into account (dis-)similarities between exemplars, it fails
to model their transitivity relationships, resulting in poor performances (see Sect.
3.3.1).

Furthermore, recent works [285], [51], [118] and [196] showed that temporal
information in videos and spatial context information in images can be utilized
as a convenient supervisory signal for learning feature representation with CNNs.
However, the computational cost of the training algorithm is enormous since
the approach in [51] needs to tackle all possible pair-wise image relationships
requiring a training set that scales quadratically with the number of samples. On
[118] authors leverage time-contrastive loss to learn representations leveraging
the temporal structure of the data. However, this approach is limited to video
sequences without repetitions since the method is based on the assumption of
mutual independence of time segments. In contrast, our approach leverages the
relationship information between compact cliques, framing similarity learning as a
multi-class classification problem. As each training batch contains mutually distinct
cliques the computational cost of the training algorithm is greatly decreased.

3.2 Methodology

In this section we show how a CNN can be employed for learning similarities
between all pairs of a large number of exemplars. In particular, the idiosyncrasies
of exemplar learning have made it difficult to unravel its full capabilities in CNNs.
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Figure 3.1: (a) Average ROC AUC for posture retrieval in the Olympic Sports dataset.
Similarities learned by (b) 1-sample CNN, (c) using NN-CNN, and (d) for the
proposed approach. The plots show a magnified crop of the full similarity
matrix. Note the more detailed fine structure in (d).

First, deep learning is extremely data hungry, which conflicts with having a single
positive exemplar for training, we now abbreviate this setup as 1-sample CNN.
This 1-sample setup then faces several issues. (i) The within-class variance of an
individual exemplar cannot be modeled. (ii) The ratio of one exemplar and many
negatives is highly imbalanced so that the cross-entropy loss over SGD batches
overfits against the negatives. (iii) An SGD batch for training a CNN on multiple
exemplars can contain arbitrarily similar samples with different label (the different
exemplars may be similar or dissimilar), resulting in label inconsistencies. (iv)
Provided the single training sample, exemplar learning cannot exploit the temporal
context of training data, if available.

The methodology proposed in this chapter overcomes this issues as follows.
In Sect. 3.2.2 we discuss why simply appending an exemplar with its nearest
neighbors and data augmentation (similar in spirit to the Clustered Exemplar-SVM
[243], which we abbreviate as NN-CNN) is not sufficient to address (i). Sect. 3.2.3
deals with (ii) and (iii) by generating batches of cliques that maximize the intra-
clique similarity while minimizing inter-clique similarity. In addition, Sect. 3.2.5
shows how to exploit temporal information to further impose structure on the
learned similarities by using a temporal average pooling.

To show the effectiveness of the proposed method we give empirical proof by
training CNNs following both 1-sample CNN and NN-CNN training protocols. Fig.
3.1(a) shows the average Receiver Operating Characteristic (ROC) curve for posture
retrieval in the Olympic Sports dataset [204] (refer to Sec. 3.3.1 for further details)
for 1-sample CNN, NN-CNN and the proposed method, which clearly outperforms
both exemplar based strategies. In addition, Fig. 3.1(b-d) show an excerpt of the
similarity matrix learned for each method. It becomes evident that the proposed
approach captures more detailed similarity structures, e.g., the diagonal structures
correspond to repetitions of the same gait cycle within a long jump.
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3.2.1 Initialization

In the previous section we have shown the shortcomings of exemplar-based training
of CNNs. The key obstacle is the discrepancy between the single positive sample
used in exemplar learning and the large amounts of data needed to train deep
CNNs. Therefore, given a single exemplar xi we attempt to find an initial number
of related samples to enable the training of a CNN which further improves the
similarities between exemplars. To obtain this initial group of related samples we
employ LDA whitened HOG [97], which is a fundamental and computationally
efficient approach to estimate similarities sij between large numbers of samples.
Moreover, since they constitute a view-based approach, HOG features are viewpoint
and rotation variant, which is therefore beneficial for pose estimation in 2D. We
define sij = s(φ(xi), φ(xj)) = φ(xi)

>φ(xj), where φ(xi) is the whitened HOG
descriptor of the exemplar and S = (sij) ∈ RN×N is the resulting kernel matrix.
The nearest neighbor of the sample i is the sample j which maximizes sij.

As can be seen from Fig. 3.4(b) most of these similarities are evidently unreliable
and, thus, the majority of samples cannot be properly ranked w.r.t. their similarity
to an exemplar xi. However, the most similar and most dissimilar samples can be
reliably identified as they are sticking out from the similarity distribution. We can
thus utilize these samples to find a small set of nearest neighbors to the exemplar
and a set of samples that are dissimilar.

3.2.2 Compact Cliques

Given an exemplar xi, assigning the same label to its nearest neighbors (positive
group) and another label to its furthest neighbors (negative group) is not suitable for
learning similarities. The exemplars in these groups may be close to xi (or distant
for the negative group) but not to another due to lacking transitivity. Furthermore,
simple synthetic augmentation of either the positive or negative groups [55] does
not add transitivity relations to other exemplars. As a result, to learn intra-class
similarities we need to restrict the model to groups of samples which are compact
and mutually similar to another (i.e. a clique), where all samples in the clique are
worthy of having the same label assigned.

To build candidate cliques we apply complete-linkage clustering to merge a xi
with its local neighborhood so that all these samples are mutually similar. Therefore,
we start at each xi and merge the sample with its local neighborhood, so that all
merged samples are mutually similar. Thus, cliques are compact, differ in size, and
may be mutually overlapping. To reduce redundancy, highly overlapping cliques
are subsequently merged by clustering cliques using farthest-neighbor clustering.
This agglomerative grouping is terminated if the intra-clique similarity of a cluster
is less than half that of its constituents.

Let K be the resulting number of compact cliques and N the number of samples
xi. Then C ∈ {0, 1}K×N is the resulting assignment matrix of samples to cliques.
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Query Ours AlexNet [149] HOG-LDA [97]

Figure 3.2: Averaging of the 50 nearest neighbors for a given query frame using similarities
obtained by our approach, AlexNet [149] pretrained on ImageNet [48], and
HOG-LDA [97].

3.2.3 Selecting Mutually Consistent Cliques

After generating a set of compact cliques we assign a unique surrogate (i.e. artificial)
label to each clique. Which means that all the samples belonging to the same clique
get the same surrogate label. However, since only the highest and lowest similarities
are reliable, samples in different cliques are not necessarily dissimilar, even if they
get assigned a different surrogate label (e.g. cliques can partially overlap). This
issue implies that the surrogate labeling is not consistent since samples with
different surrogate labels can be highly similar. Motivated by this observation and
leveraging the fact that CNNs are trained on batches of samples, we strive to find
batches of mutually distant cliques to compose our batches. Thus, all samples in a
batch can be labeled consistently because they are either similar (same compact
clique) or dissimilar (different, distant clique). Samples with unreliable similarity
then end up in different batches and we train a CNN successively on these batches.

To find a set of different batches of mutually distant cliques we now design
an optimization problem that produces a set of consistent batches of cliques. Let
Z ∈ {0, 1}B×K be an indicator matrix that assigns K cliques to B batches (row zb
of Z indicates the cliques in batch b) and S′ ∈ RK×K be the similarity between
cliques (computed as the average pairwise sample similarity). We enforce cliques
in the same batch to be dissimilar by minimizing tr (ZS′Z>). Essentially, we seek a
selection of cliques that minimize the sum of pairwise similarities between cliques
for each batch b, integrated over all batches. To remove the penalty for selecting
compact cliques (i.e. with high self-similarity) we subtract tr (Z diag (S′)Z>), which
defines the sum of similarities of cliques to themselves, integrated over all batches.
Moreover, each batch should maximize sample coverage, i.e., the number of distinct
samples in all cliques of a batch ‖zbC‖p

p should be maximal. Finally, the number
of distinct points covered by all batches, ‖1ZC‖p

p, should be maximal, so that the
different (potentially overlapping) batches together comprise as many samples as
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possible. We select p = 1/16 so that our penalty function roughly approximates the
non-linear step function. The objective of the optimization problem then becomes

min
Z∈{0,1}B×K

tr (ZS′Z>)− tr (Z diag (S′)Z>)− λ1
B

b=1
‖zbC‖p

p−λ2‖1ZC‖p
p , (3.1)

s.t. Z1>K = r1>B , (3.2)

where r is the desired number of cliques in one batch for CNN training. The
number of batches, B, can be set arbitrarily high to allow for as many rounds of
SGD training as desired. If it is too low, this can be easily spotted as only limited
coverage of training data can be achieved in the last term of Eq. (3.1). Since Z is
discrete, the optimization problem (3.1) is not easier than the Quadratic Assignment
Problem which is known to be NP-hard [23]. To overcome this issue we relax the
binary constraints and force instead the continuous solution to the boundaries
of the feasible range by maximizing the additional term λ3‖Z− 0.5‖2

F using the
Frobenius norm.

We condition S′ to be positive semi-definite by thresholding its eigenvectors and
projecting onto the resulting base. Since also p < 1 the previous objective function
is a difference of convex functions u(Z)− v(Z), where

u(Z) = tr (ZS′Z>)− λ1
B

b=1
‖zbC‖p

p − λ2‖1ZC‖p
p (3.3)

v(Z) = tr(Z diag (S′)Z>) + λ3‖Z− 0.5‖2
F (3.4)

It can be solved using the CCCP Algorithm [312]. In each iteration of CCCP, the
following convex optimization problem is solved,

arg min
Z∈[0,1]B×K

u(Z)− vec (Z)> vec (∇v(Zt)), (3.5)

s.t. Z1>K = r1>B (3.6)

where ∇v(Zt) = 2Z� (1 diag (S′)) + 2Z− 1 and � denotes the Hadamard product.
We solve this constrained optimization problem by means of the interior-point
method. Fig. 3.3 shows a visual example of a selected batch of cliques.

Let us now analyze the contribution of each term in Eq. (3.1). We observed
a significant drop in performance (by more than 30%) when we omitted any
of the terms in Eq. (3.1) because of the following reasons: (i) omitting term(
tr (ZS′Z>)− tr (Z diag (S′)Z>)

)
will allow batches to have arbitrarily similar

cliques. Thus semantically very similar samples can occur in the same batch
but with different labels; (ii) omitting term B

b=1
‖zbC‖p

p will allow a trivial solution

– each batch will degenerate to a single clique containing only a single sample;
(iii) omitting term ‖1ZC‖p

p will yield B identical batches, which contain the most
dissimilar cliques.
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3 Unsupervised Representation Learning using Surrogate Classification

3.2.4 CNN Training

We successively train a CNN on the different batches zb obtained by solving the
minimization problem in Eq. (3.1). In each batch, classifying samples according to
the clique they are in then serves as a pretext task for learning sample similarities.

One of the key properties of CNNs is the training using SGD and backpropaga-
tion [152]. The backpropagated gradient is estimated only over a subset (batch) of
training samples, so it depends only on the subset of cliques in zb. Following this
observation, the clique categorization problem is effectively decoupled into a set
of smaller sub-tasks (i.e. the individual batches of cliques). During training, we
randomly pick a batch zb in each iteration and compute the stochastic gradient,
using the loss L(W),

L(W) ≈ 1
M j∈xb

fW(xj) + λr(W) (3.7)

Vt+1 = µVt − α∇L(Wt), Wt+1 = Wt + Vt+1 , (3.8)

where M is the SGD batch size, Wt denotes the CNN weights at iteration t, and Vt
denotes the weight update of the previous iteration. Parameters α and µ denote
the learning rate and momentum, respectively.

We then compute similarities between exemplars by simply measuring correlation
on the learned feature representation extracted from the CNN (see Sect. 3.3.1 for
details).

3.2.5 Local Temporal Pooling

The proposed approach as described so far models posture by exploiting sample
(dis-)similarities of single images. However, to learn the fine-grained similarities
required to distinguish short-time actions, for instance, gait cycles of walking
vs. jogging, not only posture matters but also how posture changes over short
periods of time. This means that not only similarities need to be exploited, but
also temporal information has to be incorporated in the model in order to model
fine-grained relationships. Fortunately, a vast majority of the image data available
for unsupervised learning contains this temporal information since it exists in the
form of video sequences (e.g. YouTube videos), which can be seen as sequences of
exemplars vi = {xi

1, xi
2, . . . , xi

q} and xi
j is the j−th exemplar (i.e. j−th frame) of

the i−th video sequence.
In this chapter, we introduce an effective approach to incorporate temporal

information in our model by performing a local average pooling of the exemplar
similarities on the temporal dimension. Given a pair of exemplars appearing in two
different video sequences (vi, vj), computing a simple global pooling over the entire
sequence, as typically done for action classification [203], will result in losing fine-
grained similarity structures over sub-sequences. In addition, modelling temporal
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3.2 Methodology

context with complex recurrent architectures like Long Short-Term Memory (LSTM)
networks [54] has proven useful for action classification. However, the temporal
context that LSTMs encode cannot be learned for each exemplar, given a large
number of exemplars available for unsupervised learning (e.g. the number of
exemplars used in our experiments is in the order of 105).

To overcome these issues, we locally pool the similarities in a small temporal
neighborhood (i.e. a short sub-sequence) of p frames around each exemplar.
Formally, let s = φ′(xi

k)
>φ′(xj

l) be the similarity between two exemplars, where φ′

is the feature representation learned by the CNN. Then, the similarity obtained by
employing local temporal average pooling (LTP) is defined as:

s′ =
1

2p + 1 n∈{−p,+p}
φ′(xi

k+n)
>φ′(xj

l+n) (3.9)

This method of modeling temporal context is fast and effective, giving us a boost
in performance (cf. Sect. 3.3.1, 3.3.2) when temporal information is available in the
dataset.

3.2.6 Multiple Instance Learning of Similarities

After a training round over all batches and performing local temporal pooling (LTP)
we impute the similarities using the representation learned by the CNN. This is
motivated by the fact that once the training process converges, the similarities that
are learned are more reliable than the ones used for initialization, and thus, enable
the grouping algorithm from Sect. 3.2.2 to find larger cliques of mutually related
samples.

Since the number of unreliable similarities decreases after training the CNN,
more samples can be comprised in a training batch and overall fewer batches
already cover the same fraction of data as before training the CNN. Therefore,
we alternately train the CNN, perform local temporal pooling on the resulting
similarities and recompute cliques and batches using the similarities inferred in the
previous step. This alternating imputation of similarities and training of the CNN
follows the idea of multiple-instance learning and has shown to converge in less
than four iterations.

To evaluate the improvement of the similarities Fig. 3.4 analyzes the eigenvalue
spectrum of S on the Olympic Sports dataset, see Sect. 3.3.1. The plot shows
the normalized cumulative sum of the eigenvalues as a function of the number
of eigenvectors. Compared to the similarities used for initialization, transitivity
relations are learned and the approach can generalize from an exemplar to more
related samples. Therefore, the similarity matrix becomes more structured (cf. Fig.
3.1) and random noisy relations disappear. As a consequence, it can be represented
using very few basis vectors.
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3 Unsupervised Representation Learning using Surrogate Classification

Method Olympic Sports UCF Sports

HOG-LDA [97] 0.62 0.67
Ex-SVM [187] 0.72 0.71
Ex-CNN [55] 0.64 0.68
AlexNet [149] 0.65 0.68
1-sample CNN 0.67 0.59
NN-CNN 0.69 0.66
Doersch et al. [51] 0.62 -
Shuffle&Learn [196] 0.63 -
Ours 0.83 0.78
Ours + LTP 0.84 0.79

Table 3.1: Avg. ROC AUC for each method on Olympic Sports and UCF Sports datasets.

3.3 Experimental Evaluation

To compare our exemplar-based approach for unsupervised similarity learning
with previous works we perform both quantitative and qualitative analysis. We
conduct experiments on unsupervised fine-grained posture retrieval on 3 different
Sports datasets: Olympic Sports [204], UCF Sports [226] and Leeds Sports Pose [131].
Furthermore, to demonstrate the capabilities of our model in the semi-supervised
scenario we also tackled pose estimation on Leeds Sports [131] and MPII Pose
Dataset [6]. Finally, provided the wide applicability of the proposed approach we
also undertake the unsupervised setup of object classification (Pascal VOC 2007
dataset [67]).

3.3.1 Olympic Sports Dataset: Posture Analysis

The Olympic Sports dataset [204] consists of video sequences of athletes practicing
16 different sports. The dataset contains an overall number of 113 516 frames,
covering a rich set of human postures. As we aim to evaluate fine-grained pose
similarity, we had independent annotators manually label 20 positive (similar) and
negative (dissimilar) frames for 1033 query exemplars. We want to emphasize that
these annotations are solely used for testing since our approach is unsupervised
and does not utilize any labels during training.

We consider the following baselines for comparison with the proposed approach:
HOG-LDA [97], Exemplar-SVMs [187], AlexNet [149] pretrained on ImageNet [48],
1-sample CNN and NN-CNN models (in a very similar spirit to [243]), Exemplar-
CNN [55], the two-stream approach of Doersch et al. [51], and Shuffle&Learn
[196]. To compute person bounding boxes we use the approach of [71] as it shows
reasonable performance in object and person detection. (i) The evaluation must
explore the benefit of the unsupervised selecting of batches of cliques for deep
learning of exemplars using standard CNN architectures. For that reason, we
incarnate our approach by adopting the widely used architecture of Krizhevsky et
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3.3 Experimental Evaluation

Figure 3.3: Visual example of a resulting batch of cliques for long jump category of Olympic
Sports dataset. Each clique contains at least 20 samples and is represented as
their average.

al. [149]. To build batches for training the neural network we solve the optimization
problem in Eq. (3.1) with B = 100, K = 100, and r = 20 and fine-tune the model for
105 iterations. For the temporal average pooling we took a temporal neighborhood
of 3 frames around each exemplar. After that we measure similarities using features
extracted from layer fc7 in the caffe implementation of [149]. (ii) Exemplar-CNN is
trained using the best performing parameters reported in [55] and the 64c5-128c5-
256c5-512f architecture. Then we extract fc4 features and compute 4-quadrant
max pooling. (iii) Exemplar-SVM is trained on the query exemplars using the
HOG descriptor. Hard negative mining is run on all the samples from all sports
categories except the one which the exemplar belongs to. We find an optimal
number of negative mining rounds (less than three) using cross-validation and
set the class weights of the linear Support Vector Machine (SVM) as C1 = 0.5 and
C2 = 0.01. (iv) We compute LDA whitened HOG using approach from [97]. (v) The
1-sample CNN is trained by defining a separate class for each exemplar sample
plus one class containing all other samples. (vi) In a similar fashion, the NN-CNN is
trained using the exemplar plus 10 nearest neighbors obtained using the whitened
HOG similarities. Both CNNs were implemented using the model of [149] and
fine-tuning it for 105 iterations. We employ AdaGrad [58] solver with a batch size
of 128, learning rate of 0.001 and smoothing term of 0.0001. Each image in the
training set was augmented with 10 transformed versions by performing random
translation, scaling, rotation and color transformation, to improve invariance with
respect to these.

In Tab. 3.1 we report the average area under the Receiver Operating Characteristic
curve (ROC AUC) for each method over all categories of the Olympic Sports dataset.
More specifically, the experiments witness that the 1-sample CNN fails to model the
positive distribution, due to the high imbalance between positives and negatives and
the resulting biased gradient. In contrast, extra nearest neighbors to the exemplar
(NN-CNN) yield a better model of the intra-class variability of the exemplar leading
to a 2% performance boost over the 1-sample CNN. However, NN-CNN also sees
a large set of negatives, which are partially similar and dissimilar. Due to lack
of structure in the negative set, NN-CNN fails to thoroughly capture the fine-
grained similarities in the negative samples. To avoid this issue we compute sets of
mutually distant compact cliques resulting in a performance increase of 14% over
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Figure 3.4: (a) Cumulative distribution of the spectrum of the similarity matrices obtained
by our method and the HOG-LDA initialization. (b) Sorted similarities with
respect to one exemplar, where only similarities at the ends of the distribution
can be trusted.

NN-CNN. In addition, using local temporal pooling on the exemplar similarities
with a neighborhood radius p = 3 yields a further improvement of 1%.

Qualitatively, Fig. 3.1 renders the similarity matrices obtained by different ap-
proaches for a video sequence of the long jump category. In these matrices, the
parallel diagonals indicate the gait cycle of a person running before leaping into
the sandpit. We can see how the method proposed in this chapter clearly highlights
these gait cycles while filtering noisy similarity relationships. In addition, to visu-
ally assess the similarities we average the top 50 nearest neighbors for a randomly
chosen exemplar frame in the Olympic Sports dataset. Fig. 3.2 shows how the
neighbors obtained by our approach depict a sharper average posture since they
come from compact cliques of mutually similar exemplar frames. Therefore frames
are more similar to the original and more details of the posture are retained than
in case of the other methods. Finally, in Fig. 3.5 we show nearest neighbors for few
representative query images of the dataset.

3.3.2 UCF Sports Dataset: Transferring Posture Representations

The UCF Sports dataset [226] contains a set of actions from various sports. Originally,
this dataset consists of 12 categories. We disregarded the categories in which the
posture does not change (e.g. Horse Riding) keeping 7: diving side, golf swing
side, kicking (kicking-front and kicking-side were merged together), weight lifting,
run side, swing bench, swing side angle. Having a total of 5148 frames over all
categories, this dataset fails to fulfill with data volumes required to train deep CNN
models. In such scenarios, where little training data is available, transfer learning
has been proved to be a useful approach.

Therefore, we leverage the bigger Olympic Sports dataset and transfer the models
learned on Olympic Sports categories using them solely for computing similarities
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3.3 Experimental Evaluation

Query NNs

Figure 3.5: Nearest neighbors retrieved by the proposed approach for representative query
images of the Olympic Sports dataset.

Figure 3.6: Based on the similarity structure learned by our model on Olympic Sports,
postures are matched between Olympic (top row) and UCF (bottom row) Sports
dataset. At the bottom is the most similar frame to the one at the top.

of on the data of the UCF Sports dataset. We visually matched 4 categories of
Olympic Sports to UCF Sports and transfer the learned models: hammer-throw
and kicking, hammer-throw and swing-bench, diving-springboard-3m and swing-
side-angle, long-jump and run-side. A visual example of the matching postures
between UCF Sports and Olympic Sports dataset is shown in Fig. 3.6.
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3 Unsupervised Representation Learning using Surrogate Classification

(a) (b) (c) (d)

Figure 3.7: Pose prediction results. (a) and (c) are test images with the superimposed
ground truth skeleton depicted in red and the predicted skeleton in green. (b)
and (d) are corresponding nearest neighbors, which were used to transfer pose.

Method Torso Upper legs Lower legs Upper arms Lower arms Head Total

Shuffle&Learn [196] 60.4 33.2 28.9 16.8 7.1 33.8 30.0
AlexNet [149] 76.9 47.8 41.8 26.7 11.2 42.4 41.1
HOG-LDA [97] 73.7 41.8 39.2 23.2 10.3 42.2 38.4
Ours 80.1 50.1 45.7 27.2 12.6 45.5 43.5

Ground Truth 93.7 78.8 74.9 58.7 36.4 72.4 69.2

Pose Machines [222] 93.1 83.6 76.8 68.1 42.2 85.4 72.0

Table 3.2: PCP measure for each method on Leeds Sports dataset, using the retrieval-based
estimation for joint positions.

Analogously to the Olympic Sports dataset, independent annotators manually
labeled 20 positive (similar) and negative (dissimilar) frames for around 150 ex-
emplars in the above selected 4 categories. These annotations are solely used for
testing since we do not train on UCF Sports dataset at all.

Initialization Torso Upper legs Lower legs Upper arms Lower arms Head Total

Random 87.3 52.3 35.4 25.4 7.6 44.0 42.0
Shuffle&Learn [196] 90.4 62.7 45.7 33.3 11.8 52.0 49.3
AlexNet [149] 92.8 68.1 53.0 39.8 17.5 62.8 55.7
Ours 93.9 71.2 55.0 44.5 21.6 63.2 58.2

Table 3.3: PCP measure for each method on Leeds Sports dataset using different models as
initialization for training DeepPose [266].

We report the average ROC AUC for our approach, Exemplar-CNN [55], 1-
sample CNN, NN-CNN models, AlexNet [149], Exemplar-SVMs [187], and HOG-
LDA [97]. For each of the CNN-based approaches we simply transfer the learned
representations from the matched categories of the Olympic Sports dataset, so no
additional training is required. The experimental settings are the ones described in
Sect. 3.3.1.

Tab. 3.1 shows the average AUC for each of the compared methods on the 4 cate-
gories of UCF Sports. In particular, our approach attains a significant performance
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Figure 3.8: Heatmaps obtained by DeepPose (stg-1) [266] trained on LSP using different
models as initialization.

improvement of at least 7% with respect to all compared methods. Furthermore,
when temporal information is incorporated in the model by pooling the similarities
using local temporal pooling we obtain a further improvement of 1%. These results
support the fact that the feature representation learned by our approach in Olympic
Sports encodes a general notion of posture, and therefore can be transferred without
requiring any further learning to different categories of the UCF dataset.
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3 Unsupervised Representation Learning using Surrogate Classification

Query NNs

Figure 3.9: Nearest neighbors retrieved by the proposed approach for representative query
images of the Leeds Sports dataset.

3.3.3 Leeds Sports Dataset: Pose Estimation

The Leeds Sports Pose (LSP) Dataset [131] is a well-known and widely used
benchmark for pose estimation. This dataset consists of 1000 images for training
which we combine with 4000 images from its extended version, where each image
is annotated with all 14 joint locations from a person-centric viewpoint. Finally, the
test set consists of 1000 images.

We now evaluate the proposed approach on the problem of unsupervised pose
estimation on LSP. During training, we disregard all joint annotations from the
training set and learn pose similarities. During testing, these pose similarities
yield by our approach are used to find frames similar in posture to a query frame.
The joint locations of the test image are then estimated by identifying its nearest
neighbor from the training set and transferring its joint locations to the test image.
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Query NNs

Figure 3.10: Nearest neighbors retrieved by the proposed approach for representative query
images of the VOC2007 dataset.

For training our model we use the parameters described in Sect. 3.3.1. The simi-
larity between two images is measured as Pearson correlation on features extracted
from layer fc6. To evaluate the results we use the Percentage of Correct Parts (PCP)
measure, which is the standard metric for benchmarking pose estimation methods.

For comparison with other methods, we follow the same testing protocol and
retrieve similar postures using HOG-LDA [97], and fc6 representations of AlexNet
[149] and Shuffle&Learn [196]. In addition, we also report an upper bound on the
performance that can be achieved by the nearest neighbor joint transfer, using
ground-truth similarities to retrieve nearest neighbors. Therefore, the nearest
training pose for a test image is identified by minimizing the average Euclidean
distance between their ground-truth pose annotation. This is the best result one
can achieve by finding the most similar pose, when not provided with a supervised
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3 Unsupervised Representation Learning using Surrogate Classification

Initialization Head Neck LR Shoulder LR Elbow LR Wrist LR Hip LR Knee LR Ankle Thorax Pelvis Total

Random 79.5 87.1 71.6 52.1 34.6 64.1 58.3 51.2 85.5 70.1 65.4
Shuffle&Learn [196] 75.8 86.3 75.0 59.2 42.2 73.3 63.1 51.7 87.1 79.5 69.3
AlexNet [149] 87.2 93.2 85.2 69.6 52.0 81.3 69.7 62.0 93.4 86.6 78.0
Ours 89.5 93.7 85.9 71.6 56.3 82.7 72.4 67.3 93.8 88.3 80.2

Table 3.4: PCKh@0.5 measure for different limbs on MPII Pose benchmark dataset using
different initializations for the DeepPose approach [266].

parametric model (the performance gap to 100% shows the degree of difference
between training and test poses). For completeness, we also compare with a fully
supervised state-of-the-art approach for pose estimation [222]. We use the same
experimental settings described in Sect. 3.3.1.

The Percentage of Correct Parts @0.5 (PCP) for different approaches is reported
in Tab. 3.2. In Tab. 3.2 our approach improves the visual similarities learned using
both AlexNet and HOG-LDA. It is noteworthy that even though our approach for
estimating the pose is fully unsupervised it achieves a competitive performance when
compared to the upper-bound of supervised ground truth similarities. Qualitative
results of nearest neighbors for several query frames are presented in Fig. 3.9.

In addition, Fig. 3.7 shows success (a) and failure (c) cases of our method. In
Fig. 3.7(a) we can see that the pose is correctly transferred from the nearest neighbor
(b) from the training set, resulting in a PCP score of 0.6 for that particular image.
Moreover, Fig. 3.7(c), (d) witness that our method learns the representation invariant
to front-back flips (matching a person facing away from the camera to one facing
the camera). Since our approach learns pose similarity in an unsupervised manner,
it becomes invariant to changes in appearance as long as the shape is similar, thus
explaining this confusion. Adding extra training data or directly incorporating face
detection-based features could resolve this.

Furthermore, in addition to the fully unsupervised experiment, we evaluate the
representation learned by the proposed approach on LSP, in a semi-supervised
scenario, by using it as initialization for the supervised DeepPose [266] method.
We train DeePose (stg-1) [266] with using different initializations: (a) random
initialization, (b) ImageNet pre-trained AlexNet [149] (c) Shuffle&Learn [196] and
(d) our model trained on LSP dataset. We then follow the training procedure
described in [266], where the train split includes 11000 images (using the extended
LSP data), and the test split includes 1000 images. We use a batch size of 128,
learning rate of 5× 10−4 and optimize the CNN parameters using AdaGrad [58].

Tab. 3.3 shows the PCP@0.5 score of DeepPose (stg-1) model trained using differ-
ent methods as initialization. Using our model to initialize DeepPose (stg-1) yields
a performance boost of 2.5% over ImageNet pretrained AlexNet [149] initialization.
Showing, as a result, that the representation learned by our model successfully
encodes relevant pose information which is not only good for unsupervised pose re-
trieval but can further facilitate the training of supervised pose estimation methods.
Finally, in Fig. 3.8 we show the predicted joint heatmaps obtained by DeepPose
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HOG-LDA Wang et al. [285] Wang et al. [285] + Ours AlexNet [149] R-CNN [85]

0.118 0.450 0.481 0.616 0.683

Table 3.5: K-nearest neighbors classification results on Pascal VOC 2007 using the visual
representations learned by different methods.

[266] when using the three different initialization models for several representative
images of LSP dataset [131].

3.3.4 MPII Dataset: Pose Estimation

Next, to further assess the reliability and robustness of the pose representation
learned by our model, we tackle the challenging MPII Pose dataset [6]. MPII Pose
dataset [6] is a state of the art benchmark for evaluation of articulated human
pose estimation. MPII Pose is a particularly challenging dataset because of the
clutter, occlusion and number of persons appearing in images. To evaluate our
approach on MPII Pose we follow the semi-supervised training protocol used
for LSP and compare the performance obtained by DeepPose (stg-1) [266], when
trained using as initialization each of the following models: Random initialization,
ImageNet pre-trained AlexNet [149], Shuffle&Learn [196] and our approach trained
on LSP in unsupervised manner (Sec. 3.3.3). We use PCKh@0.5 on all the keypoints
of the full body as evaluation metric which is the standard for MPII dataset [6].
PCKh@0.5 measures accuracy of the predicted body joint coordinates, where
the matching threshold equals to 50% of the head segment length. Tab. 3.4
reports the PCKh@0.5 obtained by the DeepPose (stg-1) models [266] with different
initializations. In particular, when comparing our unsupervised initialization with
a random initialization we obtain a 15% performance boost, which indicates that
our features encode a notion of pose that is robust to the clutter present in MPII
dataset. Furthermore, we obtain a 2.2% improvement over ImageNet-pretrained
AlexNet model [149]. The performance obtained on MPII Pose dataset corroborates
that the representation learned by our method captures fine-grained posture details
and successfully deals with clutter, occlusions, and presence of multiple persons in
this dataset.

3.3.5 Pascal VOC 2007: Object Classification

Provided the wide applicability of our method, in addition to the experiments on
pose estimation datasets in the previous sections we now evaluate the learning of
similarities over object categories. For this purpose, we classify object bounding
boxes of the Pascal VOC 2007 dataset [67]. Instead of predicting the bounding box
position and category, we assume that bounding boxes are given, provided recent
outstanding results for object [85] and objectness [3] detection, and focus directly
on the object classification.
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To initialize our model we use the visual similarities of Wang et al. [285] without
applying any fine tuning on Pascal and also compare against this approach. Thus,
neither ImageNet nor Pascal VOC labels are utilized during training or pre-training.
We then evaluate how our model performs in comparison with features obtained
by HOG-LDA [97], Wang et al. [285], AlexNet [149] pretrained on ImageNet, and
R-CNN [85] which is pretrained on ImageNet and finetuned in a supervised manner
on Pascal VOC. For our method and HOG-LDA we use the same experimental
settings as described in Sect. 3.3.1.

At test time, we perform K-nearest neighbors classification for all methods. The
k nearest neighbors are computed using similarities (Pearson correlation) based
on the feature representation obtained for each method. In Tab. 3.5 we show
the classification accuracies of all approaches for k = 5 (for k > 5 there was only
insignificant performance improvement). We can see how our approach improves
upon Wang et al. [285] used as initialization to our model to yield a performance
gain of 3% without requiring any supervision information or fine-tuning on Pascal.
Finally, in Fig. 3.10 we show the retrieved nearest neighbors for few query samples
of different categories of the Pascal VOC dataset [67].

3.4 Conclusion

In this chapter, we have proposed a technique for deep unsupervised learning of
visual similarities between a large number of exemplars. We analyze the shortcom-
ings of exemplar learning on CNNs and address the single positive exemplar setup,
the imbalance between exemplar and negatives, and inconsistent labels within
SGD batches. We address these key problems by optimizing a single cost function
yielding SGD batches of compact, mutually dissimilar cliques of samples. Each
of these cliques then gets assigned a surrogate label, and the learning of visual
similarities is then posed as a categorization task on individual batches.

In the experimental evaluation the proposed approach has shown competitive
performance compared to the state-of-the-art, providing significantly finer similarity
structure that is particularly crucial for detailed posture analysis. Furthermore, the
experimental evaluation in several pose datasets shows that the pose representation
learned by our model in an unsupervised manner is transferable across pose
datasets and can be used in conjunction with supervised parametric models for
pose estimation to boost their performance. Finally, the proposed approach also
demonstrates competitive performance in general object classification problems.
Overall, our experimental results show that the representation learned by our
model generalizes well to a spectrum of different tasks and datasets.
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Learning using Partially Ordered

Sets
1

Figure 4.1: Visualization of the interaction between surrogate classes and partially ordered
sets (posets). Our approach starts with a set of unlabeled samples, building
small surrogate classes and generating posets to unlabeled samples to learn
fine-grained similarities.

As discussed in the previous chapters, to utilize the vast amounts of available
unlabeled training data, there is a quest to leverage context information intrinsic
to images/video for self-supervision. However, this context is typically highly
local (i.e position of patches in the same image [51], object tracks through short
number of frames [285] or image inpainting [215]), establishing relations between
tuples [51] or triplets [196, 285, 307] of images. Hence, these approaches utilize
loss functions that order a positive xp and a negative xn image with respect to
an anchor image xa so that, d(xa, xp) < d(xa, xn), where d is a distance in the
representation space. During training, these methods rely on the Convolutional
Neural Network (CNN) to indirectly learn comparisons between samples that were
processed in independent training batches, and generalize to unseen data.

Instead of relying on the CNN to indirectly balance and learn sample compar-
isons unseen during training, a more natural approach is to explicitly encode richer

1This chapter is based on joint work [12] with Miguel A. Bautista and Björn Ommer, originally
presented at CVPR 2017. References to prior work (such as “existing approaches”, “recent
methods”, or “state-of-the-art methods”) should be read with this context in mind.

59



4 Unsupervised Representation Learning using Partially Ordered Sets

…y0
y1�0 �m

Compute 
grouping

Learn  
representation

Compute 
grouping

Learn  
representation

Figure 4.2: Visual summary of our approach. In the y-steps, the clustering procedure
computes surrogate classes (shaded in color) based on the current representation.
In the φ-steps, we learn a representation using the surrogate classes and partial
orders of samples not assigned to any surrogate class (samples in white) by
pulling them closer to their nearest classes and pushing them further from the
rest.

relationships between samples as supervision. In this sense, an effective approach
for unsupervised representation learning is to frame it as a series of surrogate
(i.e., artificially created) classification tasks, which was proposed in Chapter 3.
Therefore, mutually similar samples are assigned the same class label, otherwise a
different label. To obtain surrogate classification tasks, compact groups of mutually
similar samples are computed by clustering [11] over a weak initial representation
(e.g, standard features such as Histogram of Oriented Gradients (HOG)). Then,
each group receives a mutually exclusive label, and a CNN is trained to solve the
associated classification problem, thereby learning a representation that encodes
similarity in the intermediate layers. However, given the unreliability of initial
representation, many training samples are neither mutually similar nor dissimilar
and are, thus, not assigned to any of the compact surrogate classes. Consequentially
they are ignored during training, hence overlooking important information. Also,
classification can yield relatively coarse similarity measure, considering the discrete
nature of the classes. Furthermore, the similarities learned by the different classi-
fication tasks are not optimized jointly, which can lead to mutually contradicting
relationships since transitivity is not captured.

To overcome these fundamental limitations, we propose to: (i) Cast representation
learning as a surrogate classification task, using compact groups of mutually related
samples as surrogates classes (as in Chapter 3). (ii) Combine classification with
a partial ordering of samples. Even samples, which cannot be assigned to any
surrogate class due to unreliable initial similarities, are thus incorporated during
training and, in contrast to discrete classification, more fine-grained relationships
are obtained due to the ordering. (iii) Explicitly optimize similarities in a given
representation space, instead of using the representation space indirectly learned
by intermediate layers of a CNN trained for classification. (iv) Jointly optimize the
surrogate classification tasks for similarity learning and the underlying grouping
in a recurrent framework that is end-to-end trainable. Fig. 4.2 shows a conceptual
pipeline of the proposed approach.
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Experimental evaluation on diverse tasks of pose estimation and object classifica-
tion shows an improvement over the method introduced in Chapter 3 achieving
state-of-the-art performance on standard benchmarks, thus underlining the broad
applicability of the proposed approach. In the pose estimation experiments, we
show that our method learns a generalizable representation, which can be trans-
ferred across datasets and is even valuable for the initialization of supervised
methods. Also, in the object classification experiments, we successfully lever-
age large unlabeled datasets to learn representations in the fashion of zero-shot
learning [150].

4.1 Related Work

Representation learning has been a problem of major interest for the vision com-
munity from its early beginnings due to its broad applications. With the advent
of CNNs, several approaches have been proposed for supervised representation
learning using either pairs [313], or triplets [281] of images. Furthermore, recent
works by Misra et al. [196], Wang et al. [285], and Doersh et al. [51] showed that
temporal information in videos and spatial context information in images can be
utilized as a convenient supervisory signal for learning feature representation with
CNNs in an unsupervised manner. However, either supervised or unsupervised,
all these formulations for learning representations (or similarities induced by the
representations) require that the supervisory information scales quadratically for
pairs of images, or cubically for triplets. This results in a very large training time.
Furthermore, tuple and triplet formulations advocate on the CNN to indirectly
learn to conceal unrelated pairs of samples (i.e., pairs that were not tied to any an-
chor) that are processed in different, independent batches during training. Another
recent approach that has been proposed for learning similarities in an unsupervised
manner is to build a surrogate (i.e., an artificial) classification task either by utilizing
heavy data augmentation [55] or by clustering based on initial weak estimates of
similarities (presented in Chapter 3). The advantage of these approaches over
tuple or triplet formulations is that several relationships of similarity (samples in
the same class) and dissimilarity (samples in other classes) between samples are
utilized during training. This results in more efficient training procedures, avoiding
to sample millions of pairs or triplets of samples, and encoding richer relationships
between samples.

In Chapter 1, Section 1.1.2, we also discussed unsupervised representation
learning approaches that appeared after we published the work presented in the
current chapter. In addition, in Chapter 1, Section 1.1.1 and Chapter 2 we have
studied representation learning from the perspective of Deep Metric Learning
approaches.

Recently, Wang et al. [289] leveraged low-density classifiers to enable the use
of large volumes of unlabeled data during training. However, [289] cannot be

61



4 Unsupervised Representation Learning using Partially Ordered Sets

successfully applied to the unsupervised scenario since it requires a strongly
supervised initialization, e.g., pretraining on ImageNet [48].

4.2 Approach

In this section, we show how to combine partially ordered sets (posets) of samples
and surrogate classification to learn fine-grained similarities in an unsupervised
manner. Key steps of the approach include: (i) Compute compact groups of
mutually related samples and use each group as a surrogate class in a classification
task. (ii) Learn fine-grained similarities by modeling partial orderings to also
leverage those samples that cannot be assigned to a surrogate class. (iii) Due to the
interdependence of grouping and similarity learning, we jointly optimize them in
a recurrent framework. Fig. 4.2 shows a visual example of the main steps of our
approach.

4.2.1 Grouping

To formulate unsupervised similarity learning as a classification approach, we
need to define surrogate classes since labels are not available. To compute these
surrogate classes, we first gather compact groups of samples using distances based
on standard features like HOG-LDA (LDA whitened HOG [61, 97, 231]). HOG-LDA
is a computationally effective foundation for estimating similarities between a large
number of samples. Let our training set be defined as X ∈ Rn×p, where n is the
total number of samples, and xi is the i−th sample. Then, the HOG-LDA similarity
between a pair of samples xi and xj is defined as sij = exp(−‖φ(xi)− φ(xj)‖2).
Here φ(xi) ∈ R1×d is the d−dimensional representation of sample xi in the HOG-
LDA feature space.

Albeit unreliable to relate all samples to another, HOG-LDA similarities can be
used to find the nearest and furthest neighbors, as highly similar and dissimilar
samples to a given anchor sample xi stand out from the similarity distribution.
Therefore, to build surrogate classes (i.e., compact groups of samples), we group
each xi with its immediate neighborhood (samples with similarity within the top
5%) so that all merged samples are mutually similar. These groups are compact,
differ in size, and may be mutually overlapping. To reduce redundancy, highly
overlapping classes are subsequently merged by agglomerative clustering, which
terminates if the intra-class similarity of a surrogate class is less than half of its
constituents. We denote the set of samples assigned to the c-th surrogate class as
Cc, and the label assigned to each sample as y ∈ {−1, 0, . . . , C− 1}1×n, where the
label assigned to sample xi is denoted as yi. All samples that are not assigned to
any surrogate class get label −1.
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Figure 4.3: Visual interpretation of a poset. Samples assigned to a surrogate class are
shaded in a particular color, while samples not assigned to surrogate classes are
represented in white.

4.2.2 Partially Ordered Sets

Provided the unreliability of similarity estimates used for building surrogate classes,
a large number of samples cannot be assigned to any class, because they are
neither similar nor dissimilar to any sample. This deprives the optimization of
using all available data during training. As a result, fine-grained similarities are
poorly represented, since learning to classify surrogate classes does not model
relative similarities of samples that are not assigned to any class. To overcome this
limitation, we leverage the information encoded in posets of samples relative to a
surrogate class. That is, for each sample not assigned to any surrogate class (i.e.
xi : yi = −1) we compute a soft assignment (i.e. a similarity score) to the Z
nearest surrogate classes Cz : z ∈ {1, . . . , Z}. Once all unlabeled points are softly
assigned to their Z nearest classes, we obtain as a result, a poset Pc for each class.
Thus, a poset Pc is a set of samples which are softly assigned to class Cc. Posets
can be of variable size and partially overlapping. We show a visual example of a
poset in Fig. 4.3.

Formally, given a deep feature representation φθ (e.g an arbitrary layer in a
CNN with parameters θ), and a surrogate class Cc, a poset of unlabeled samples
Pc = {xj, . . . , xk} : yj = yk = −1 ∀ j, k with respect to Cc is defined as:

∀xi∈Cc{exp(−‖φθ(xi)− φθ(xj)‖2) >

exp(−‖φθ(xi)− φθ(xk)‖2)} ⇐⇒ j < k∀j, k. (4.1)

In Eq. (4.1) a poset is defined by computing the similarity of unlabeled sample xj
to all the samples in class Cc, which during training is costly to optimize. However,
due the compactness of our grouping approach, which only gathers very similar
samples into surrogate Cc, we can effectively replace the similarities to all points in
Cc by the similarity to a representative sample x̄c in Cc, which is the class medioid,
x̄c = arg min

xi∈Cc
xj∈Cc
‖φθ(xi)− φθ(xj)‖2.
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4 Unsupervised Representation Learning using Partially Ordered Sets

Following the definition of a poset in Eq. (4.1), the widely adopted tuple and
triplet formulations [51, 196, 285, 307] are a specific case of a poset in which P
contains at most 2 samples, and Cc contains just one. In this sense, deep feature
representations φ (i.e., CNNs) trained using triplet losses seek to sort two pairs of
samples (i.e., anchor-positive and anchor-negative) according to their similarity. As
a result, triplet formulations rely on the CNN to indirectly learn to compare and rec-
oncile the vast number of unrelated sampled pairs that were processed on different,
independent mini-batches during training. In contrast, posets, explicitly encode an
ordering between a large number of sample pairs (i.e., pairs consisting of an unla-
beled sample and its nearest class representative). Therefore, using posets during
training enforces the CNN to order all unlabeled samples xi : yi = −1 according
to their similarity to the Z nearest class representatives rz

i : z ∈ {1, . . . , Z},
where rz

i is the z−th nearest x̄c to sample xi, learning fine-grained interactions
between samples. Posets generalize tuple and triplet formulations by encoding
similarity relationships between unlabeled samples to make a decision whether to
move closer to a surrogate class. This effectively increases our training set when
compared to just using the samples assigned to surrogate classes and allows us to
model finer relationships.

4.2.3 Objective function

In our formulation, we strive for a trade-off model in which we jointly optimize a
surrogate classification task and a metric loss to capture the fine-grained similarities
encoded in posets. Therefore, we seek an objective function L which penalizes:
(i) misclassifications of samples xi with respect to their surrogate label yi, and (ii)
similarities of samples xi : yi = −1. with respect to their Z nearest class represen-
tatives. The objective function should inherit the reliability of framing similarity
learning as surrogate classification tasks while using posets to incorporate those
training samples that were previously ignored because they could not be assigned
to any surrogate class. In particular, we require the CNN to pull samples from
posets xi ∈ Pc closer to their Z nearest class representatives, while pushing them
further from all other class representatives in a training mini-batch. Furthermore,
we require that unreliable similarities (i.e., samples that are far from all surrogate
classes) vanish from the loss, rendering the learning process robust to outliers.
In addition, in order to capture fine-grained similarity relationships, we want to
directly optimize the feature space φ in which similarities are computed.

Therefore, let Rz ∈ Rn×d denote the z-th nearest class representatives of each
unlabeled sample xi : yi = −1, where rz

i is the z-th nearest class representative
of sample xi, and θ be the parameters of the CNN. Then, our objective function
combines the surrogate classification loss L1 with our poset loss L2:

L(xi, yi, R; θ) =
1
N

N
i=1
L1(xi, yi) + λL2(xi, R, φ), (4.2)
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where λ is a scalar and,

L1(xi, yi; θ) = − log
exp(tθ

i,yi
)

C−1
j=0 exp(tθ

i,j)
1yi≠−1, (4.3)

L2(xi, R; θ) =

= − log

Z
z=1

exp( −1
2σ2 (‖ φθ(xi)− φθ(rz

i )‖2
2 − γ))

C′
j=1 exp( −1

2σ2 ‖ φθ(xi)− φθ(rj)‖2
2)

.
(4.4)

In Eq. (4.3), tθ
i = tθ(xi) are the logits of sample xi for a CNN with parameters

θ. In Eq. (4.4) C′ is the number of surrogate classes in the batch, σ is the standard
deviation of the current assignment of samples to surrogate classes, and γ is the
margin between surrogate classes. It is note-worthy that Eq. (4.4) can scale to an
arbitrary number of classes, since it does not depend on a fixed-sized output target
layer, avoiding the shortcomings of large output spaces in CNN learning [275] 2.

Finally, note that if Z = 1, the problem reduces to a cross-entropy based clas-
sification, where the standard logits (i.e., outputs of the last layer) are replaced
by the similarity to the surrogate class representative in feature space φ. How-
ever, for Z > 1, relative similarities between surrogate classes enter into play and
posets encoding fine-grained interactions arise naturally (cf. Fig. 4.5). In all our
experiments, we set Z ≥ 2. During training, CNN parameters θ are updated
by error-backpropagation with stochastic mini-batch gradient descent. In typical
classification scenarios, the training set is randomly shuffled to avoid biased gra-
dient computations that hamper the learning process. Therefore, at training time
we build our mini-batches of samples by selecting a random set of samples not
assigned to a surrogate class xi : yi = −1, and retrieving all the surrogate classes
Cc which contain xi in their poset xi ∈ Pc. In Fig. 4.4 we take as a study case the
long jump category of the Olympic Sports dataset (cf. Sec. 4.3) and show the L
decreases along iterations. In particular, we show that if y and θ are optimized
jointly, we attain better performance.

4.2.4 Joint Optimization

In our setup, the grouping and similarity learning tasks are mutually dependent
on each other. Therefore, we strive to jointly learn a representation φθ , which
captures similarity relationships, and an assignment of samples to surrogate classes
y. A natural way to model such dependence in variables is to use a Recurrent
Neural Network (RNN) [194]. In particular, RNNs have shown a great potential to
model relationships on sequential problems, where each prediction depends on
previous observations. Inspired by this insight, we employ a recurrent optimization
technique. Following the standard process for learning RNNs we jointly learn

2In our experiments we successfully scaled the output space to 20K surrogate classes.
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4 Unsupervised Representation Learning using Partially Ordered Sets

Figure 4.4: Loss value L for long jump category over each unrolling step. Evidently, the
model benefits from jointly optimizing {y, θ}.

{y, θ} by unrolling the optimization into steps. At time step m we update y and θ
as follows:

y(m) = arg max
y

G(X; φθ(m−1)
, y(m−1))

s.t. n
i:yi=c

1 > t, ∀c∈{0,...,C−1},
(4.5)

θ(m) = arg min
θ

L(X, y(m), R(m); θ(m−1)). (4.6)

Where G is a cost function of pairwise clustering that favors compactness based
on sample similarities, which are entailed by the representation φθ(m−1)

, and t is a
lower bound on the number of samples of each cluster.

G(X; φθ , y) = C−1
c=0

n
i:yi=c

n
j:yj=c

exp(−‖φθ(xi)− φθ(xj)‖2)(
n

j:yj=c
1
)2 . (4.7)

In order to avoid the trivial solution of assigning a single sample to each cluster,
we initialize y(0) with the grouping introduced in Sect. 4.2.1 using HOG-LDA
as our initial φ. In our implementation, y follows a relaxed one-hot encoding,
which can be interpreted as an affinity of samples to clusters. Then, Eq. (4.5)
becomes differentiable and is optimized using Stochastic gradient descent (SGD).
Subsequently, L learns a deep similarity encoding representation φθ(m) on samples
X using assignments y(m) and partial orders of X with respect to representatives
R(m). In a typical RNN scenario, for each training iteration the RNN is unrolled m
steps. However, this would be inefficient in our setup, as the CNN representation
φθ is learned using SGD, and thus, requires to be optimized for a large number of
iterations to be reliable, especially at the first unrolled steps. Therefore, at each step
m, we find θ(m) by optimizing Eq. (4.6) for a number of iterations, fixing y(m) and
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R(m). Then, we use θ(m) to find the optimal y(m+1) by optimizing G using SGD. The
presented RNN can also be interpreted as block-coordinate descent [300], where the
grouping y is fixed while updating the representation parameters θ and vice versa.
The convergence of block coordinate-descent methods has been largely discussed,
obtaining guarantees of convergence to a stationary point [13, 268].

4.3 Experiments

In this section, we present a quantitative and qualitative analysis of our poset-based
approach on the challenging and diverse scenarios of human pose estimation and
object classification. In all our experiments, we adopt the AlexNet architecture
[149].

4.3.1 Human Pose Estimation

To evaluate the proposed approach in the context of pose estimation, we consider
3 different datasets, Olympic Sports (OS), Leeds Sports Pose (LSP), and MPII-
Pose (MPI). We show that our unsupervised method is valuable for a range of
retrieval problems: For OS we evaluate zero-shot retrieval of detailed postures.
On LSP, we perform zero-shot and semi-supervised estimation of pose. Finally,
on MPII, we evaluate our approach as an initialization for a supervised learning
approach for pose estimation. In contrast to other methods that finetune supervised
initializations of CNNs, we train our AlexNet [149] architecture from scratch.

Olympic Sports

The Olympic Sports dataset [204] is a compilation of video sequences of different
16 sports competitions, containing more than 110000 frames overall. We use the
approach of [71] to compute person bounding boxes and utilize this large dataset
to learn a general representation that encodes fine-grained posture similarities.
In order to do so, we initially compute 20000 surrogate classes consisting of 8
samples on average. Then, we utilize partially ordered sets of samples not assigned
to any surrogate classes. To train our RNN, we use the optimization approach
described in Sect. 4.2.4, where the RNN is unrolled on m = 10 steps. At each
unrolled step, θ is updated during 20000 iterations of error-backpropagation. To
evaluate our representation on fine-grained posture retrieval, we utilize the same
annotations which we collected in Chapter 3 and which are available online3 and
follow the same evaluation protocol, using these annotations only for testing. We
compare our method with CliqueCNN [11] from Chapter 3, the triplet formulation
of Shuffle&Learn [196], the tuple approach of Doersch et al. [51], Exemplar-CNN
[55], AlexNet [149], Exemplar-SVMs [187], and HOG-LDA [97]. For completeness, we
also include a version of our model that was initialized with ImageNet model [149].

3 https://asanakoy.github.io/cliquecnn/
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4 Unsupervised Representation Learning using Partially Ordered Sets

Method Olympic Sports

HOG-LDA [97] 0.62
Ex-SVM [187] 0.72
Ex-CNN [55] 0.64
AlexNet [149] - ImageNet 0.65
Doersch et al. [51] 0.62
Shuffle&Learn [196] 0.63
CliqueCNN - ImageNet 0.83
Ours - Scratch 0.78
Ours - ImageNet 0.85

Table 4.1: Average ROC AUC for each method on Olympic Sports dataset.

During training we use as φ the fc7 output representation of AlexNet and compute
similarities using cosine distance. We use Tensorflow [1] for our implementation.
(i) For Shuffle& Learn [196], and Doersh et al. [51] methods, we use the models
downloaded from their respective project websites. (ii) Exemplar-CNN is trained
using the best performing parameters reported in [55] and the 64c5-128c5-256c5-512f
architecture. Then we use the output of fc4 and compute 4-quadrant max pooling.
(iii) Exemplar-SVM was trained on the exemplar frames using the HOG descriptor.
The samples for hard negative mining come from all categories except the one that
an exemplar is from. We performed cross-validation to find an optimal number of
negative mining rounds (less than three). The class weights of the linear Support
Vector Machine (SVM) were set as C1 = 0.5 and C2 = 0.01. During training of
our approach, each image in the training set is augmented by performing random
translation, scaling, and rotation to improve invariance with respect to these.

In Tab. 4.1, we show the average area under the Receiver Operating Characteristic
curve (ROC AUC) over all categories for the different methods. When compared
with the best runner up [11], the proposed approach improves the performance
2% (the method in [11] was pre-trained on ImageNet). This improvement is due to
the additional relationships established by posets on samples not assigned to any
surrogate class, which [11] ignored during training. In addition, when compared to
the state-of-the-art methods that leverage tuples [51] or triplets [196] for training a
CNN from scratch, our approach shows 16% higher performance. This is explained
by the more detailed similarity relationships encoded in each poset, which in tuple
methods the CNN has to learn implicitly.

In addition to the quantitative analysis, we also perform a qualitative evaluation
of the similarities learned by the proposed method. In order to do so, we take
a sequence from the long jump category of Olympic Sports and select two repre-
sentatives {r1, rr} with a gap of 8 frames between them and show in Fig. 4.5 the
poset learned by our approach. The top row shows two representatives of the same
sequence highlighted in red and the remaining sub-sequence between them in blue.
In the bottom row, we present the poset learned by our approach. Since r1 and
r2 show different parts of a short gait cycle, the similarity relations in the poset
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Ground truth

Poset

r1 r2

Figure 4.5: Partially ordered set learned by the proposed approach. The top row shows two
surrogate class representatives (highlighted in red) of the same sequence and
the ground truth sub-sequence between them highlighted in blue. The bottom
row shows the predicted poset highlighted in green, successfully capturing
fine-grained similarities.

should set other frames into perspective and order them. And indeed, we observe
that the poset successfully encodes this temporal coherence by ordering frames
from other sequences that fit in this gap. This is even more interesting since during
training absolutely no temporal structure was introduced in the model, as we were
training on only individual frames. These results spurred our interest to also apply
the learned posets for video reconstruction using only a few sparse representatives
per sequence; additional results can be found in our github repository4.

Leeds Sports Pose

After evaluating the proposed method for fine-grained posture retrieval, we tackle
the problem of zero-shot pose estimation on the LSP dataset. That is, we transfer
the pose representation learned on Olympic Sports to the LSP dataset and retrieve
similar poses based on their similarity. The LSP [131] dataset is one of the most
widely used benchmarks for pose estimation. In order to evaluate our model, we
then employ the fine-grained pose representation learned by our approach on OS
and transfer it to LSP without doing any further training. For evaluation, we use
the representation to compute visual similarities and find the nearest neighbors
to a query frame. Since the evaluation is zero-shot, ground-truth joint locations
are not available. At test time, we, therefore, estimate the joint coordinates of a
query person by finding the most similar frame from the training set and taking its
joint coordinates. We then compare our method with AlexNet [149] pre-trained on
ImageNet, the triplet approach of Misra et al. (Shuffle&Learn) [196] and CliqueCNN
[11]. In addition, we also report an upper bound on the performance that can be

4https://github.com/asanakoy/deep unsupervised posets
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Method Torso Upper legs Lower legs Upper arms Lower arms Head Total

AlexNet [149] - ImageNet 76.9 47.8 41.8 26.7 11.2 42.4 41.1
CliqueCNN - ImageNet 80.1 50.1 45.7 27.2 12.6 45.5 43.5
Ours - ImageNet 83.5 54.0 46.8 34.1 16.8 54.3 48.3

Shuffle&Learn [196] 60.4 33.2 28.9 16.8 7.1 33.8 30.0
Ours - Scratch 67.0 38.6 34.9 20.5 9.8 35.1 34.3

Ground Truth 93.7 78.8 74.9 58.7 36.4 72.4 69.2

Pose Machines [222] 93.1 83.6 76.8 68.1 42.2 85.4 72.0

Table 4.2: PCP measure for each method on Leeds Sports dataset for zero-shot pose estima-
tion.

achieved by zero-shot evaluation using ground-truth similarities. Here the most
similar pose for a query is given by the frame, which is closest in average distance
of ground-truth pose annotations. This is the best one can achieve without a
parametric model of pose (the performance gap to 100% shows the discrepancy
between poses in the test and the train set). For completeness, we compare with a
fully supervised state-of-the-art approach for pose estimation [222]. For computing
similarities, we use the same experimental settings as described in Sect. 4.3.1,
where φ is the representation extracted from pool5 layer of AlexNet. In Tab. 4.2,
we show the PCP@0.5 (Percentage of Correct Parts) obtained by different methods.
For a fair comparison with CliqueCNN [11] (which was pre-trained on ImageNet),
we include a version of our method trained using ImageNet initialization. Our
approach significantly improves the visual similarities learned using both ImageNet-
pretrained AlexNet and CliqueCNN [11], obtaining a performance boost of at least
4% in PCP score. In addition, when trained from scratch without any pretraining
on ImageNet, our model outperforms the recent triplet model of [196] by 4%, due
to the fact that posets are a natural generalization of triplet models, which encode
finer relationships between samples. Finally, it is notable that even though our
pose representation is transferred from a different dataset without finetuning on LSP, it
obtains state-of-the-art performance. In Fig. 4.6, we show a qualitative comparison
of the part predictions of the supervised approach in [266] trained on LSP, with the
heatmaps yielded by our zero-shot approach.

In addition to the zero-shot learning experiments, we also used our pose repre-
sentation learned on Olympic Sports as initialization for learning the DeepPose
method [266] on LSP in a semi-supervised fashion. Our implementation of this
method is available on github5. To evaluate the validity of our representation, we
compare the performance obtained by DeepPose [266], when trained with one of
the following models as initialization: random initialization, Shuffle&Learn [196]
(triplet model), and our approach trained on Olympic Sports. For completeness,
we also compared with ImageNet pre-trained AlexNet [149]. Tab. 4.3 shows the
PCP@0.5 obtained by training DeepPose (stg-1) using their best reported parame-
ters. The obtained results show that our representation successfully encodes pose

5https://github.com/asanakoy/deeppose tf
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Initialization Torso Upper legs Lower legs Upper arms Lower arms Head Total

Random 87.3 52.3 35.4 25.4 7.6 44.0 42.0
Shuffle&Learn [196] 90.4 62.7 45.7 33.3 11.8 52.0 49.3
Ours - Scratch 89.7 62.1 48.2 36.0 16.0 54.2 51.0

AlexNet [149] - ImageNet 92.8 68.1 53.0 39.8 17.5 62.8 55.7

Table 4.3: PCP measure for the DeepPose [266] on Leeds Sports dataset trained using
different methods as initialization. “Ours - Scratch” is the network which was
trained from scratch on Olympic Sports dataset.

Head Neck Shoulders Elbows Wrists Hips Knees Ankles

Figure 4.6: Top row: Heatmaps obtained by DeepPose (stg-1) [266] trained on LSP, high-
lighted in red. Bottom row: Heatmaps obtained by our zero-shot unsupervised
approach, highlighted in green.

information, obtaining a performance boost of 9% when compared with a random
initialization (that our model starts from), since we learn general pose features
that act as a regularizer during training. A note-worthy comparison is that the
difference between utilizing ImageNet pretraining, which uses 1.2 million labeled
images, and our unsupervised learning approach is just 5%.

MPII Pose

We now evaluate our approach in the challenging MPII Pose dataset [6] which
is a state of the art benchmark for evaluation of articulated human pose estima-
tion. The dataset includes around 25K images containing over 40K people with
annotated body joints. MPII Pose is a particularly challenging dataset because of
the clutter, occlusion, and number of persons appearing in images. To evaluate
our approach in MPII Pose, we follow the semi-supervised training protocol used
for LSP and compare the performance obtained by DeepPose [266], when trained
using as initialization each of the following models: Random initialization, Shuf-
fle&Learn [196] (triplet model) and our approach trained on OS. For completion,
we also evaluate ImageNet pre-trained AlexNet [149] as initialization. Following
the standard evaluation metric on MPII dataset, Tab. 4.4 shows the PCKh@0.5
obtained by training DeepPose (stg-1) using their best reported parameters with
the different initializations.
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Initialization Head Neck LR Shoulder LR Elbow LR Wrist LR Hip LR Knee LR Ankle Thorax Pelvis Total

Random 79.5 87.1 71.6 52.1 34.6 64.1 58.3 51.2 85.5 70.1 65.4
Shuffle&Learn [196] 75.8 86.3 75.0 59.2 42.2 73.3 63.1 51.7 87.1 79.5 69.3
Ours 83.8 90.9 77.5 60.8 44.4 74.6 65.4 57.4 90.5 81.3 72.7

AlexNet - ImageNet 87.2 93.2 85.2 69.6 52.0 81.3 69.7 62.0 93.4 86.6 78.0

Table 4.4: PCKh@0.5 measure for different limbs on MPII Pose benchmark dataset using
different initializations for the DeepPose approach [266].

The performance obtained on MPII Pose benchmark shows that our unsuper-
vised representation successfully scales to challenging datasets, successfully dealing
with clutter, occlusions, and multiple persons. In particular, when comparing our
unsupervised initialization with a random initialization, we obtain a 7% perfor-
mance boost, which indicates that our features encode a robust notion of pose
that is robust to the clutter present in MPII dataset. Furthermore, we obtain a
3% improvement over the Shuffle&Learn [196] approach, due to the finer-grained
relationships encoded by posets. Finally, it is important to note that the differ-
ence between utilizing ImageNet-pretrained AlexNet[149] and our unsupervised
learning approach is just 5%.

4.3.2 Object Classification on Pascal VOC

To evaluate the general applicability of our approach, let us now switch from
human pose estimation to the challenging, diverse problem of object classification.
We classify object bounding boxes of the Pascal VOC 2007 [67] dataset in zero-shot
fashion by predicting the most similar images to a query. The object representation
needed for computing similarities, we obtain without supervision information,
using visual similarities of the triplet model of Wang et al. [285] as initialization.
Neither this initialization nor our method apply pretraining or finetuning on Ima-
geNet or Pascal VOC. Using this initialization, we then compute an initial clustering
on 1000 surrogate classes with 8 samples on average, on the training set images.
We then utilize partially ordered sets of samples not assigned to any class, and
jointly optimize assignments and representation using the recurrent optimization
approach describe in Sect. 4.2.4. We use the fc6 layer as the representation φ to
compute similarities on the Pascal datasets for every CNN method that we now
compare. We compare our approach with HOG-LDA [97], the triplet approach of
[285], CliqueCNN [11] (from Chapter 3), AlexNet [149] pre-trained on ImageNet,
and R-CNN [85] which is pretrained on ImageNet and finetuned in a supervised
fashion on Pascal VOC. In Tab. 4.5, we show the classification accuracy for all
methods using K-nearest neighbors classifier with k = 5 (for k > 5 there was only
insignificant performance improvement). Our approach improves upon the initial
representation of the unsupervised triplet approach of [285] to yield a performance
gain of 6% without requiring any supervision information or finetuning on Pascal.
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Note that the method of Wang at al. [285] cannot be trained directly on Pascal
dataset as it requires video training data.

HOG-LDA Wang et al. [285] CliqueCNN[11] Wang et al. [285] + Ours AlexNet [149] R-CNN [85]

0.1180 0.4501 0.4812 0.5101 0.6160 0.6825

Table 4.5: K-nearest neighbors classification results on Pascal VOC 2007 using the visual
representations learned by different methods.

4.4 Conclusions

We have presented an unsupervised approach for representation learning based on
CNNs by framing it as a combination of surrogate classification tasks and poset
ordering. This generalizes the widely used tuple and triplet losses to establish
relations between large numbers of samples. Representation learning then becomes
a joint optimization problem of grouping samples into surrogate classes while
learning the deep representation encoding image similarities. In the experimental
evaluation, the proposed approach has shown competitive performance when
compared to state-of-the-art results. The learned representations encode fine-
grained image similarity relationships in the context of human pose estimation and
object classification and generalize to novel datasets.
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(a) 3D model charting
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(b) established dense mapping human ⇔ chimpanzee
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Figure 5.1: 3D shape re-mapping from the SMPL [176] model for humans to new object
categories (chimps). Manually defined semantic charting (a) on both models
is used to establish dense correspondences (b) based on continuous semantic
descriptors

In the previous chapters, we explored supervised and self-supervised representa-
tion learning approaches. This chapter will combine supervised pretraining and
self-supervised training into a self-training approach to adapt the network represen-
tation to solving a novel task where no ground-truth annotations are available for
training. Recent contributions have demonstrated that it is possible to recognize the
pose of humans densely and accurately. In principle, the same approach could be
extended to any animal class, but the effort required for collecting new annotations
for each case makes this strategy impractical, despite important applications in
nature conservation, science and business. Therefore, we show that, at least for
proximal animal classes such as chimpanzees, it is possible to transfer the knowl-
edge existing in dense pose recognition for humans, as well as in more general
object detectors and segmenters, to the problem of dense pose recognition in other
classes.

In the past few years, computer vision has made significant progress in human
pose recognition. Deep networks can effectively detect and segment humans [100],
localize their sparse 2D keypoints [202], lift these 2D keypoints to 3D [208], and even
fit complex 3D models such as Skinned Multi-Person Linear Model (SMPL) [135,

1This chapter is based on joint work [237] with Vasil Khalidov, Maureen S. McCarthy, Andrea
Vedaldi, and Natalia Neverova, originally presented at CVPR 2020. References to prior work
(such as “existing approaches”, “recent methods”, or “state-of-the-art methods”) should be read
with this context in mind.
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136], all from a single picture or video. DensePose [92] has shown that it is even
possible to estimate a dense parameterization of pose by mapping individual image
pixels to a canonical embedding space for the human body.

Such advances have been made possible by the introduction of large human pose
datasets manually annotated with sparse or dense 2D keypoints, or even in 3D
by means of capture systems such as domes. For example, the DensePose-COCO
dataset [92] contains 50K COCO images manually annotated with more than 5
millions human body points. Clearly, collecting such data is very tedious, but
is amply justified by the importance of human understanding in applications.
However, the natural world contains much more than just people. For example,
as of today scientists have identified 6,495 species of mammals, 60K vertebrates
and 1.2M invertebrates [124]. The methods that have been developed for human
understanding could likely be applied to most of these animals as well, provided
that one is willing to incur the data annotation burden. Unfortunately, while
the applications of animal pose recognition in conservation, natural sciences, and
business are numerous, just learning about one more animal may be difficult to
justify economically, let alone learning about all animals.

Yet, there is little reason to believe that these challenges are intrinsic. Humans
can understand the pose of most animals almost immediately, with good accuracy,
and without requiring any data annotations at all. Furthermore, images and videos
of animals are abundant, so the bottleneck is the inability of machines to learn
without external supervision.

In this chapter, we thus consider the problem of learning to recognize the pose
of animals with as little supervision as possible. However, rather than starting
from scratch, we want to make use of the rich annotations that are already available
for several animals, and humans in particular. Thus, we focus on the problem of
taking the existing annotated data as well as additional unlabelled images and
videos of a target animal species and learn to recognize the pose of the latter.
Furthermore, for this study we restrict our attention to an animal species that is
reasonably close to the available annotations, and elect to focus on the particular
example of chimpanzees due to their evolutionary closeness to humans.2 However,
the findings in this chapter are likely to generalize to many other classes as well.

We make several contributions in this work. First, we introduce a dataset for
chimpanzees, DensePose-Chimps, labelled in the DensePose fashion, which we
mostly use to assess quantitatively the performance of our methods. We carefully
design the canonical mapping for chimpanzees to be compatible with the one for
humans in the original DensePose-COCO, in the sense that points in the two animal
models are in as close a correspondence as possible. This is important to be able to
transfer dense pose recognition results from humans to chimpanzees while being
able to asses the quality of the obtained results.

2The idea is to eventually extend pose recognition to more and more animal species, in an incre-
mental fashion.
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Second, we study in detail several strategies to transfer existing animal detec-
tors, segmenters, and dense pose extractors from the available annotated data to
chimpanzees. In particular, while dense pose annotations exist only for humans,
bounding box and mask annotations have been collected for several other object
categories as well. As a representative source dataset we thus consider COCO and
we investigate how the different COCO classes can be combined to train an object
detector and segmenter that transfers optimally to chimpanzees. Surprisingly, we
find that transfer from humans alone is not optimal, nor human is the best class
for training a model for chimpanzees. In addition to the DensePose-Chimps data,
we collect human annotations for instance masks on the Chimp&See3 videos of
chimpanzees captured with camera traps in the wild to evaluate the detection per-
formance in the most challenging conditions (with severe occlusions, low visibility
and motion blur).

Finally, we propose a framework for augmenting and adapting the human
DensePose datasets to new species by self-supervision and pseudo-labeling with
zero ground truth annotations on the target class. 4

5.1 Related work

Human pose recognition. There is abundant work on the recognition of human
body pose, both in 2D and in 3D. Given that our focus is 2D pose recognition,
we discuss primarily the first class of methods. 2D human pose recognition has
flourished by the introduction of deep neural networks [26, 202, 290] trained on large
manually-annotated datasets of images and videos such as COCO [168], MPII [6],
Leeds Sports Pose Dataset (LSP) [132, 133], PennAction [317] and Posetrack [5].
Furthermore, Dense Pose [92] has introduced a dataset with dense surface point
annotations, mapping images to a UV representation of a parametric 3D human
model (SMPL) [176].

While all such approaches are strongly-supervised, there are also methods that
attempt to learn pose in a completely unsupervised manner [18, 177, 261, 262, 263,
318], including approaches presented in Chapters 3 and 4. Unfortunately, this
technology is not sufficiently mature to compete with strong supervision in the
wild.

Animal pose recognition. Also related to our work, several authors have learned
visual models of animals for the purpose of detection, segmentation, and pose
recognition. Some animals are included in almost all general-purpose 2D visual
recognition datasets, and in COCO in particular. Hence, all recent detectors and
segmenters have been tested on at least a few animal classes.

3Some of these videos are available at http://www.zooniverse.org/projects/sassydumbledore/

chimp-and-see.
4Project page: https://asanakoy.github.io/densepose-evolution
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For pose recognition, however, the existing body of research is more restricted.
Some recent papers have focused on designing pose estimation systems and bench-
marks for particular animal species such as Amur tigers [162], cheetahs [199] or
drosophila melanogaster flies [93]. There have been a number of large efforts on
designing annotation tools for animals, such as DeepLabCut [190] and Anipose [137].
These tools also provide functionality for lifting 2D keypoints to 3D by using mul-
tiple views and triangulation. A more detailed overview on applying computer
vision and machine learning methodology in neuroscience and zoology is given
in [191]. One of the main challenges in this field remains the narrow focus of
existing research on specific kinds of animals and particular environments.

There have been few works focusing on the problem of animal understanding
from visual data alone and in a more systematic way. This includes the estimation
of facial landmarks through domain adaptation [223, 306], and very recently full
body pose estimation [25] of four-legged animals by combining large-scale human
datasets with a smaller number of animal annotations in a cross-domain adaptation
framework. Finally, a line of work from Zuffi et al. [328, 329, 330] is exploring the
problem of model-based 3D pose and shape estimation for animal classes. Their
research is based on parametric linear model, Skinned Multi-Animal Linear (SMAL),
obtained from 3D scans of toy animals and having the capacity to represent multiple
classes of mammals. SMAL is the animal analogous of the popular SMLP [176]
model for humans. It has since been used in other publications [17] for 3D animal
reconstruction, but these methods may still be insufficiently robust for deployment
in the wild.

Unsupervised and less supervised pose recognition. Recent methods such as
[125, 177, 261, 262, 263, 318] learn sparse and dense object landmarks for simple
classes without making use of any annotation, but are too fragile to be used in our
application. Also relevant to our work, Slim DensePose [201] looked at reducing
the number of annotations required to learn a good DensePose model for humans.

Self-training for dense prediction. Recent studies [299, 305] have demonstrated
effectiveness of self-training on the task of image classification when scaled to
large amounts of unlabeled data. Pseudo-labeling by averaging predictions from
multiple transformed versions of unlabeled samples has been shown effective for
keypoint estimation [221]. However, there has been very little research on self-
training in the context of dense prediction tasks. Our recent work [9] explored the
idea of self-training for segmentation of seismic images and showed promising
results on this task for the first time, however, it is out of the scope of this disserta-
tion. We presented more exhaustive discussion of other self-training methods in
Chapter 1.1.3.
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5.2 Method

We wish to develop a methodology to learn Dense Pose models for new classes
with minimal annotation effort. Existing labelled datasets for object detection,
segmentation and pose estimation, provide a significant source of supervision that
can be harnessed for this task. For detection and segmentation, COCO provide
extensive annotations for a variety of object classes, including several animals. For
pose recognition, however, the available supervision is generally limited to humans,
with a few exceptions. Furthermore, for dense pose recognition only human datasets
are available — the best example of which is DensePose-COCO [92].

In this work, we raise a number of questions most critical for this setup, namely:

• defining learning and evaluation protocols on new animal categories allowing
for training class-specific or class-agnostic DensePose models on a variety of
species in a unified way (described in Sect. 5.2.1);

• improving quality of DensePose models and their robustness to unseen data
distributions at test time (discussed in Sect. 5.2.2 and 5.2.3);

• optimally combining the existing variety of data sources in order to initialize
a detection model for a new animal species (discussed in Sect. 5.2.4);

• defining strategies for mining dense pseudo-labels for gradual domain adap-
tation from humans to chimpanzees in a teacher-student setting (discussed in
Sect. 5.2.5).

5.2.1 Annotation through 3D shape re-mapping

While our aim is to learn to reconstruct the dense pose of chimpanzees with zero
supervision, a manually-annotated dataset for this class is required for evaluation.
Here, we explain how to collect DensePose annotations for a new category, such as
chimpanzees.

Dense Pose model. Recall that DensePose-COCO contains images of people col-
lected ‘in the wild’ and annotated with dense correspondences. These dense
keypoints are identified as the point p ∈ S of a reference 3D model S ⊂ R3 of
the object.5 Furthermore, the keypoints p ∈ S are indexed by triplets (c, u, v) ∈
{1, . . . , C}× [0, 1]2 where c is the chart index, corresponding to one of C model parts,
and (u, v) are the coordinates within a chart. The DensePose-COCO dataset [92]
contains bounding boxes, pixel-perfect foreground-background and part segmenta-
tions, and (c, u, v) annotations for a large number of foreground pixels.

Dense Pose for chimps. We wish to extend the DensePose annotations to the
chimpanzee class. In order to do so, we rely on a separate artist-created 3D model6

5Dense Pose uses SMPL [176] to define S due to its popularity
6Purchased from http://hum3d.com/
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of a chimpanzee as a reference for annotators to collect labels for the chimpanzee
images (instead of the human model used by the original DensePose).

For each object, we use Amazon Mechanical Turk to collect the object bounding
boxes, followed by pixel-perfect foreground/background segmentation masks,
and finally the (c, u, v) chart coordinates for a certain number of pixels randomly
sampled from the foreground regions. Differently from the original DensePose, we
do not also collect dense annotations for the body parts as the latter was found to
be very challenging for the annotators. Note however that the chart index c reveals
the part identity for each of the annotated image pixels.

Semantic alignment. Finally, we wish to align the human and chimpanzee Dense-
Pose models by mapping the collected annotations back on the surface of the SMPL
model using the mesh re-mapping strategy described below. The latter step unifies
the evaluation protocols across different object categories and allows to transfer
knowledge and annotations between different species.

In spite of the fact that humans and most mammals share topology and the
skeletal structure, establishing precise semantic dense correspondences between the
3D models of humans and different animal species is challenging due to differences
in body proportions and local geometry.

As preprocessing, we manually charted the SMPL and the chimp meshes into
L = 32 semantically-corresponding parts to guide the mapping. Then, for each
vertex p of each mesh S, we extracted an adapted version of the continuous semantic
descriptor d(p) proposed by Léon et al. [158]:

d(p) = (d`(p))L
`=1, d`(p) =

1
|S`| s∈S`

g(p, s; S`) (5.1)

where S` ⊂ S is the set of all vertices in part ` of the mesh and g(p, s) is the
geodesic distance between two points on S.7 With this, the mapping from the
human mesh S to the chimp mesh S′ is obtained by matching nearest descriptors:
S→ S′, p 7→ argminq∈S′ ‖dS(p)− dS′(q)‖2.

This simple approach yields satisfactory results both in terms of alignment and
smoothness, as shown in Fig. 5.1. It does not require any optimization in 3D space
based on model fitting or mesh deformation and works on meshes of arbitrary
resolutions. Interestingly. exploiting information about mesh geometry (such as
high dimensional SHOT [235] descriptors or their learned variants [96]) instead
or in addition to semantic features results in noisy mappings. This can likely be
attributed to prominent inconsistencies in local geometry of some body regions
between the object categories.

7To partially compensate for differences in proportions across different categories, we further
normalized the descriptors by their part average: d`(p)← d`(p)/〈d`(q)〉q∈S`

.
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Figure 5.2: Comparison of the original (a) and our (b) DensePose learning architecture.
See Sect. 5.2.2 for detailed description of the architecture.

5.2.2 Multi-head R-CNN

Our goal is to develop a DensePose predictor for a new class. Such a predictor
must detect the object via a bounding box, segment it from the background, and
obtain the DensePose chart and uv-map coordinates for each foreground pixel. We
implement this with a single model with multiple heads, performing the various
tasks on top of the same trunk and shared image features (Fig.5.2.b).

The base model is R-CNN [100] modified to include the following heads. The
first head refines the coordinates of the bounding box. The second head computes a
foreground-background segmentation mask in the same way as Mask R-CNN. The
third and the final head computes a part segmentation mask I, assigning each pixel
to one of the 24 Dense Pose charts, and the uv map values for each foreground
pixel.

Class-agnostic model. Compared to the standard Mask R-CNN, our model is class
agnostic, i.e. trained for only one class type. This is true also when we make use
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of a Mask R-CNN pre-trained on multiple source classes as the goal is always to
only build a model for the final target chimpanzee class — we found that merging
classes is an effective way of integrating information.

Heterogeneous training. Our training data can be heterogeneous. In particular,
COCO provides segmentation masks for 80 categories, but DensePose-COCO
provides DensePose annotations only for humans. While we train a single class-
agnostic model, the Dense Pose head is trained only for the class human for which
the necessary ground-truth data is available.

Note in particular that both the Mask R-CNN head and the DensePose head
contain a foreground-background segmentation component — these are not equiv-
alent, as the DensePose one is only valid (and trainable) for humans, while the
Mask R-CNN one is generic (and trainable from all COCO classes). We will see in
the experiments that their combination improves performance.

Fine-tuning. As shown later, for fine-tuning the model we generate pseudo-label
on chimpanzees imagery. The pseudo-labels are generated for all components
of the model (segmentations, uv maps), including in particular both foreground-
background segmentation heads.

Other architectural improvements. Our model (Fig. 5.2.a) has a few mode differ-
ences compared to the original Dense Pose (Fig. 5.2.b) which we found useful to
improved accuracy and/or data collection efficiency.

First, both the original and our implementations use dense (pixel-perfect) super-
vision for the foreground-background masks. However, in our version we do not
use the pixel-perfect part segmentations in the original DensePose annotations —
the part prediction head is trained only from the chart labels for the pixels that are
annotated in the data. This is another reason why we do not collect pixel-perfect
segmentations for the chimpanzee images.

We further improve the DensePose head by implementing it using Panoptic
Feature Pyramid Networks [146], and use a configuration similar to DeepLab [32]
that benefits from higher resolution.

5.2.3 Auto-calibrated R-CNN

As suggested above, pseudo-labelling can be used to fine-tune a pre-trained model
on imagery containing the target class, chimpanzees in our case. The idea is to
use a model pre-trained on a different class or set of classes to generate labels
in the new domain, and then to retrain the model to fit those labels. Due to the
domain gap, however, the pseudo-labels are somewhat unreliable. In this section,
following [142] we develop a principled manner to let the neural network itself
produce a calibrated measure of uncertainty which we can use to rank pseudo-labels
by reliability.
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Figure 5.3: Instance Segmentation score (AP) on DensePose-Chimps for Mask R-CNN mod-
els trained using different COCO categories, ranked by decreasing performance.

Classification uncertainty. Our model performs categorical classification for two
purposes: to associate a class label to a bounding box, and to classify individual
pixels as background, foreground, or as one of the body parts. In order to estimate
the uncertainty for these categorical predictions, we adopt the temperature scaling
technique of [110].

Thus let zy be the score that the neural network associates to hypothesis y ∈
{1, . . . , K} for a given input sample. We extend the network to compute an ad-
ditional per-sample scalar α ≥ 0. With this scalar, the posterior probability of
hypothesis y is given by the scaled softmax

σ̂(y; z, α) =
exp

(
αzy

)
K
k=1 exp(αzk)

(5.2)

We can interpret the coefficient α = 1/T as an inverse temperature. A small α
means that the model is fairly certain about the prediction, whereas a large α that
it is not.

Note that, since α is also estimated by the neural network, we require a mech-
anism to learn it. This is in fact obtained automatically [110, 200] by simply
minimizing the negative log-likelihood of the model, also known in this case as
cross-entropy loss: `(y, z, α) = − log σ̂(y; z, α).

Regression with uncertainty. Our model performs regression to refine the bound-
ing box proposals (for four scalar outputs, two for each of the two corners of the
box) and to obtain the DensePose uv-coordinates (for two scalar outputs for each
image pixel in a proposal).

Thus let y ∈ RD be the vector emitted by one of the regression heads (where D
depends on the head). Similarly to the classification case, we use the network to
also predict an uncertainty score σ ∈ RD. This time, however, we have a different
scalar for each element in y (hence, for the uv-maps, we have two uncertainty scores
for each pixel, which we can visualize as an image). The vector σ is interpreted
as the diagonal variance of the regressed vector y, assuming the latter to have a
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Gaussian distribution. The uncertainty scores σ can thus be trained jointly with the
predictor ŷ by minimizing the negative log-likelihood of the model:

`(y, ŷ, σ)=
D
2

log 2π +
1
2

D
i=1

(
log σ2

i +
(ŷi − yi)

2

σ2
i

)
(5.3)

For a fixed error |ŷi− yi|, the quantity above is minimized by setting σi = |ŷi− yi|—
hence the model is encouraged to guess the magnitude of its own prediction error.
However, if |ŷi − yi| = 0, the quantity above diverges to −∞ for σi → 0. Hence, we
clamp σi from below to a minimum value σmin > 0.

model AP AP50 AP75

DensePose-RCNN 50.88 80.40 54.80
DensePose-RCNN* 51.44 81.44 55.12
DensePose-RCNN* (σ) 54.13 82.32 58.06

model AP AP50 AP75

DensePose-RCNN 43.84 76.88 45.84
DensePose-RCNN* 43.84 77.52 45.60
DensePose-RCNN* (σ) 45.58 78.79 47.93

Table 5.1: Detection (left) and instance segmentation (right) performance on DensePose-
COCO minival.

model AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

DensePose-RCNN 46.8 84.5 47.7 41.8 48.0 54.7 89.5 58.9 43.3 55.5
DensePose-RCNN* 47.2 85.8 47.3 42.5 48.4 55.2 91.0 59.1 44.0 55.9
DensePose-RCNN* (σ) 53.2 88.3 57.0 48.6 54.6 61.2 92.4 67.2 50.0 61.9

Table 5.2: DensePose performance on DensePose-COCO minival. * denotes our improved
architecture; (σ) denotes the proposed Auto-calibrated version of the network.

Details. For both classification and regression models, the uncertainties α and σ
must be positive — in the network, they are obtained via a softplus activation.

5.2.4 Optimal transfer support

In this section, we investigate which object categories in the COCO dataset provide
the best support for recognizing a new animal species, chimpanzees in our case.
Among the animals in COCO, chimpanzees are most obviously related to humans,
and we may thus expect that people may be the most transferable class. However,
despite their overall structural similarity, people’s appearance is fairly different,
also due to the lack of fur and the presence of clothing. Furthermore, context is
also often quite different. It is thus unclear if a deep network trained to recognise
humans can transfer well at all on chimpanzees, or whether other object categories
might do better.

Class selection. We test what is more important: biological proximity of the species
(as a proxy to morphological similarity) or appearance similarity (as a combination
of typical poses and textures). We also search for a brute force solution for this
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particular dataset to back up or disprove our intuition for class selection. In our
experiments, we have tested the following selections:

• person class only (due to morphological similarity).

• animal classes only (due to higher pose and texture similarity): bear, dog,
elephant, cat, horse, cow, bird, sheep, zebra, giraffe, mouse.

• top-N scoring classes on the new category (brute force solution). In this
setting, we first train a set of C single-class models for each of the C = 90
object classes in the COCO dataset and rank them according to their instance
segmentation performance on the DensePose-Chimps dataset (see Fig. 5.3).
Then for each combination of S ∈ {1, . . . , C} top scoring classes we train
the same network from scratch. The solution that have we found optimal
corresponds to Copt = 9, where the top-C scoring classes are: bear, dog,
elephant, cat, horse, cow, bird, person, sheep.

As shown in Tab. 5.5, the top-N solution produces similar results compared to
combination person+animals. Person class only is ineffective for training in this
setting.
Class fusion. We have also explored the question of class-agnostic vs multi-
class training as a trade-off between the number of training samples per class vs
granularity of prediction modes. For the task of adapting the new model to a
single category (on the given dataset) class-agnostic training showed convincingly
stronger results (see Tab. 5.5).

5.2.5 Dense label distillation

Finally, we aim at finding an effective strategy for exploiting unlabeled data for the
target domain in the teacher-student training setting and performing distillation in
dense prediction tasks. In our setting, the teacher network trained on the selected
classes of the COCO dataset with DensePose is used to generate pseudo-labels for
fine-tuning the student network on the augmented data. The student network is
initialized with teacher’s weights.

Once teacher predictions on unlabeled data are obtained, we start by filtering
out low confidence detections using calibrated detection scores. After that, the
bounding boxes and segmentation masks on remaining samples are used for
augmented training. For mining DensePose supervision, we consider three different
dense sampling strategies driven by each of the tasks solved by the teacher network,
in addition to uniform sampling:

• uniform sampling – all points from the selected detections are sampled with
equal probability;

• coarse classification uncertainty [mask-based] – sampling top k from ranked
calibrated posteriors produced by the mask branch for the task of binary
classification;
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DensePose-Chimps Chimp&See

sampling k APDPose APD APS APD APS

– – 33.4 62.1 56.4 50.5 43.5

uniform 5 34.5± .4 63.3± .3 58.0± .3 58.9± .5 49.0± .5
mask-based 5 34.7± .4 63.3± .3 58.0± .2 58.8± .6 49.0± .5
I-based 5 34.9± .6 63.4± .3 58.0± .2 59.2± .4 49.2± .5
uv-based 5 34.6± .3 63.3± .3 58.2± .3 59.0± .1 49.6± .1

Table 5.3: AP of the student network trained with different sampling strategies. Optimal
number of sampled points k per detection is reported for each sampling. The
first row corresponds to the teacher network. Mean±std for 20 runs.

• fine classification uncertainty [I-based] – selection of top k from ranked
calibrated posteriors from the 24-way segmentation outputs of the DensePose
head;

• regression uncertainty sampling [uv-based] – sampling of top k points based
on ranked confidences in the uv-outputs of the DensePose head.

In Sect. 5.3 we provide experimental evidence that sampling based on confidence
estimates from fine-grained tasks (I-estimation, uv-maps) results in the best student
performance.

5.3 Experiments

We now describe the results of empirical evaluation and provide detailed descrip-
tions of ablation studies.

5.3.1 Datasets

We use a combination of human and animal datasets with different kinds of
annotations or no annotations at all. A brief description of each of them is provided
below.

DensePose-COCO dataset [92]. This is the dataset for human dense pose esti-
mation, that we use for training the teacher model. It contains 50k annotated
instances totalling to more than 5 million ground truth correspondences. We also
augment the teacher training with other object categories from the original COCO
dataset [168].

Chimp&See dataset. For training our models in a self-supervised setting, we
used unlabeled videos containing chimpanzees from the Chimp&See project8. This

8A subset of the videos from the Chimp&See dataset is publicly available at http://www.zooniverse.
org/projects/sassydumbledore/chimp-and-see.
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DensePose-Chimps Chimp&See

k APDensePose APD APS APD APS

0 33.8± .2 63.1± .2 57.9± .2 59.0± .3 49.2± .4
1 34.7± .5 63.0± .2 57.9± .3 59.3± .3 49.3± .6
2 34.6± .6 63.4± .3 57.9± .3 59.2± .4 49.3± .4
5 34.9± .5 63.4± .3 58.0± .2 59.2± .4 49.2± .5
10 34.6± .6 63.3± .3 58.0± .3 59.2± .4 49.4± .4
1000 33.1± .6 63.2± .2 57.8± .3 59.2± .5 49.4± .5
10000 27.6± 4.6 60.2± .4 55.7± .5 58.0± .7 49.1± .6

Table 5.4: DensePose, detection and instance segmentation AP of the student network
trained with I-sampling for different number of sampled points k. Mean±std for
20 runs.

data is being collected under the umbrella of The Pan African Programme9: The
Cultured Chimpanzee (PanAf) by installing camera traps in more than 40 natural
habitats of chimpanzees on different sites in Africa. In this work, we used a subset
of the collected data consisting of 18,556 video clips, from 10 sec to 1 min long
each, captured with cameras in either standard or night vision mode depending
on lighting conditions. These recordings were motion triggered automatically by
passing animals. As a result, some clips may not contain any chimps beyond first
several frames.

For evaluation, we chose videos from one site, sampled frames at 1 fps, removed
the near duplicates and collected human annotations for instance masks. This
resulted into 1054 images containing 1528 annotated instances, that we use to
benchmark detection performance in our models. However, due to in-the-wild na-
ture of this data and presence of motion blur, severe occlusions, and low resolution
in some cases, we found it infeasible to collect precise human annotations at the
level of dense correspondences.

DensePose-Chimps test set. For the task of evaluating DensePose performance on
this new category, we collected a set of 662 higher quality images that contain 933
instances of chimpanzees. We annotated this data with bounding boxes, binary
masks, body part segmentation and dense pose correspondences as explained in
Sect. 5.2.1.

5.3.2 Implementation Details

In this subsection we provide more details on our implementation of the Multi-head
R-CNN network. Our codebase and network configuration files are available on
github10. We introduced a number of changes and improvements in the Dense-
Pose head of the standard DensePose R-CNN architecture of [92] with ResNet-50
[102] backbone. These changes are listed below for the affected branches; other

9http://panafrican.eva.mpg.de
10https://github.com/facebookresearch/detectron2
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5 Self-Training for Transferring Dense Pose to Proximal Animal Classes

selected COCO object classes AP AP50 AP75

top-9 classes 57.29 85.63 63.45
bear-only 40.69 70.88 44.23
person-only 9.39 19.32 8.21
animals-only 52.28 80.62 58.60
person + animals 57.34 85.76 63.59

person + animals: class agnostic 57.34 85.76 63.59
person + animals: class specific 50.47 72.85 54.30

Table 5.5: Instance segmentation AP on DensePose-Chimps for Mask R-CNN trained on
different subsets of classes.

branches remained unchanged and correspond exactly to the Mask R-CNN archi-
tecture of [100].

• We have increased the RoI resolution from 14× 14 to 28× 28 in the DensePose
head, as proposed in [308].

• We have replaced the 8-layer DensePose head with the geometric and context
encoding (GCE) module [308], combining a non-local convolutional layer [284]
with the atrous spatial pyramid pooling (ASPP) [31].

• We have replaced the original Feature Pyramid Network (FPN) of DensePose
R-CNN with a Panoptic FPN [146].

Each of these modifications led to increase in network performance due to improved
multi-scale context aggregation. We refer the reader to the work of [308] for ablation
studies whose results are aligned well with our own observations.

The teacher and the students networks share the same architecture. To predict α
or σ we simply extend the output layer of the corresponding head by doubling the
number of its neurons.

5.3.3 Results

Ablations on architectural choices. First, we compare our model to the original
DensePose-RCNN [92] (detectron2 implementation). We also ablate our improve-
ments in the architecture and provide results with and without auto-calibration.
Tab. 5.1, 5.2 show consistent improvements on all tasks for both modifications.

Optimal transfer support. We (a) benchmarked every strategy for class selection
described in Sect. 5.2.4 and (b) experimented with multi-class and class-agnostic
models. From Tab. 5.5 we can see that class agnostic training on the animals+person
subset shows the best transferability for DensePose-Chimps dataset. Therefore, it
was used for training all our DensePose models.
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Figure 5.4: Visual results: (left) teacher network predictions vs (right) predictions of stu-
dent network trained using I-sampling. The student produces more accurate
boundaries and uv-maps. Zoom-in for details. Image source: [4, 68, 69, 184, 193,
264, 265, 273].

Dense label distillation. We conducted experiments with different sampling
strategies and different numbers of sampled points k per detection. In Tab. 5.3 we
show performance of the teacher (first row) and the student networks trained using
different sampling strategies along with the corresponding optimal k. I-based
sampling showed most impressive gains, followed by uv-based sampling. Uniform
selection produces poor results. In Tab. 5.4 we report performance for different
number of sampled points in every detection for I-based sampling.
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5 Self-Training for Transferring Dense Pose to Proximal Animal Classes

Computational cost. Our auto-calibrated model has a negligible computational
overhead (< 1%) compared to the baseline model. Before training the student,
sampling of the pseudo-labels requires one forward pass of the teacher network
over the unlabeled dataset.

Qualitative results Qualitative results for the teacher and the student networks are
shown in Fig. 5.4. In addition, we also point the readers to the video samples11

from the Chimp&See dataset showing frame-by-frame predictions produced by
our model before (teacher) and after self-training (student). The results produced by
the student network are generally significantly more stable.

5.4 Conclusions

We have studied the problem of extending dense body pose recognition to animal
species and suggested that doing this at scale requires learning from unlabelled
data. Encouragingly, we have demonstrated that existing detection, segmentation,
and dense pose labelling models can transfer very well to a proximal animal class
such as chimpanzee despite significant inter-class differences. We have shown that
substantial improvements can be obtained by carefully selecting which categories
to use to pre-train the model, by using a class-agnostic architecture to integrate
different sources of information, and by modelling labelling uncertainty to grade
pseudo-label for self-training. In this manner, we have been able to achieve excellent
performance without using a single labelled image of the target class for training.

In the future, we would like to investigate how a limited amount of target
supervision can be best used to improve the results, and how other techniques
from domain adaptation could also be used for this purpose.

11https://asanakoy.github.io/densepose-evolution
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6 Style-Aware Content Loss for

Real-time High-resolution Style

Transfer
1

A picture may be worth a thousand words, but at least it contains a lot of very
diverse information. This not only comprises what is portrayed, e.g., composition
of a scene and individual objects, but also how it is depicted, referring to the artistic
style of a painting or filters applied to a photo. Especially when considering artistic
images, it becomes evident that not only content but also style is a crucial part of
the message an image communicates (just imagine van Gogh’s Starry Night in the
style of Pop Art). Here, we follow the common wording of our community and
refer to ’content’ as a synonym for ’subject matter’ or ’sujet’, preferably used in
art history. A vision system then faces the challenge to decompose and separately
represent the content and style of an image to enable a direct analysis based on
each individually. The ultimate test for this ability is style transfer [79] – exchanging
the style of an image while retaining its content.

In contrast to the seminal work of Gatys et al. [79], who have relied on powerful
but slow iterative optimization, there has recently been a focus on feed-forward
generator networks [59, 117, 130, 164, 269, 270, 286]. The crucial representation in all
these approaches has been based on a VGG16 or VGG19 network [249], pre-trained
on ImageNet [48]. However, a recent trend in deep learning has been to avoid
supervised pre-training on a million images with tediously labeled object bounding

1This chapter is based on joint work [238] with Dmytro Kotovenko, Sabine Lang, and Björn Ommer,
originally presented at ECCV 2018. References to prior work (such as “existing approaches”,
“recent methods”, or “state-of-the-art methods”) should be read with this context in mind.

Figure 6.1: Evaluating the fine details preserved by our approach. Can you guess which of
the cut-outs are from Monet’s artworks and which are generated? Solution is
on p. 108.
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[79] [79] [79] on collection [130] on collection Ours on collection

Content

(a) (b) (c) (d) (e)

Figure 6.2: Style transfer using different approaches on 1 and a collection of reference style
images. (a) [79] using van Gogh’s ”Road with Cypress and Star” as reference
style image; (b) [79] using van Gogh’s ”Starry night”; (c) [79] using the average
Gram matrix computed across the collection of Vincent van Gogh’s artworks;
(d) [130] trained on the collection of van Gogh’s artworks alternating target
style images every SGD mini-batch; (e) our approach trained on the same
collection of van Gogh’s artworks. Stylizations (a) and (b) depend significantly
on the particular style image, but using a collection of the style images (c), (d)
does not produce visually plausible results, due to oversmoothing over the
numerous Gram matrices. In contrast, our approach (e) has learned how van
Gogh is altering particular content in a specific manner (edges around objects
also stylized, cf. bell tower)

boxes [285]. In the setting of style transfer this has the particular benefit of avoiding
from the outset any bias introduced by ImageNet, which has been assembled
without artistic consideration. Rather than utilizing a separate pre-trained VGG
network to measure and optimize the quality of the stylistic output [59, 79, 130,
164, 269, 270, 286], we employ an encoder-decoder architecture with adversarial
discriminator, Fig. 6.3, to stylize the input content image and also use the encoder
to measure the reconstruction loss. In essence the stylized output image is again
run through the encoder and compared with the encoded input content image.
Thus, we learn a style-specific content loss from scratch, which adapts to the
specific way in which a particular style retains content and is more adaptive than a
comparison in the domain of RGB images [326].

Most importantly, however, previous work has only been based on a single
style image. This stands in stark contrast to art history which understands ”style
as an expression of a collective spirit” resulting in a ”distinctive manner which
permits the grouping of works into related categories” [72]. As a result, art history
developed a scheme, which allows to identify groups of artworks based on shared
qualities. Artistic style consists of a diverse range of elements, such as form, color,
brushstroke, or use of light. Therefore, it is insufficient to only use a single artwork,
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Figure 6.3: Pipeline of our approach. Encoder-decoder network with style-aware content
loss, transformed image loss, and discriminator.

because it might not represent the full scope of an artistic style. Today, freely
available art datasets such as Wikiart [138] easily contain more than 100K images,
thus providing numerous examples for various styles. Previous work [59, 79, 130,
164, 269, 270, 286] has represented style based on the Gram matrix, which captures
highly image-specific style statistics, cf. Fig. 6.2. To combine several style images in
[59, 79, 130, 164, 269, 270, 286] one needs to aggregate their Gram matrices. We have
evaluated several aggregation strategies and averaging worked the best, Fig. 6.2 (c).
But, obviously, neither art history, nor statistics suggests aggregating Gram matrices.
Additionally, we investigated alternating the target style images in every mini-batch
while training [130], Fig. 6.2 (d). However, all these methods cannot make proper
use of several style images, because combining the Gram matrices of several images
forfeits the details of style, cf. the analysis in Fig. 6.2. In contrast, our proposed
approach allows to combine an arbitrary number of instances of a style during
training.

We conduct extensive evaluations of the proposed style transfer approach; we
quantitatively and qualitatively compare it against numerous baselines. Being able
to generate high quality artistic works in high-resolution, our approach produces
visually more detailed stylizations than the current state of the art style transfer
approaches and yet shows real-time inference speed. The results are quantitatively
validated by experts from art history and by introduced in this chapter deception
rate metric based on a deep neural network for artist classification.

6.1 Related Work

In recent years, a lot of research efforts have been devoted to texture synthesis
and style transfer problems. Earlier methods [107] are usually non-parametric
and are build upon low-level image features. Inspired by Image Analogies [107],
approaches [77, 167, 246, 247] are based on finding dense correspondence between
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content and style image and often require image pairs to depict similar content.
Therefore, these methods do not scale to the setting of arbitrary content images.

In contrast, Gatys et al. [79, 80] proposed a more flexible iterative optimization
approach based on a pre-trained VGG-19 network [249]. This method produces
high quality results and works on arbitrary inputs, but is costly, since each opti-
mization step requires a forward and backward pass through the VGG19 network.
Subsequent methods [130, 159, 269] aimed to accelerate the optimization procedure
[79] by approximating it with feed-forward convolutional neural networks. This
way, only one forward pass through the network is required to generate a styl-
ized image. Beyond that, a number of methods have been proposed to address
different aspects of style transfer, including quality [35, 81, 128, 286, 294], diversity
[163, 270], photorealism [180], combining several styles in a single model [30, 59,
278] and generalizing to previously unseen styles [83, 117, 164, 244]. However, all
these methods rely on the fixed style representation which is captured by the
features of a VGG [249] network pre-trained on ImageNet. Therefore they require
a supervised pre-training on millions of labeled object bounding boxes and have
a bias introduced by ImageNet, because it has been assembled without artistic
consideration. Moreover, the image quality achieved by the costly optimization in
[79] still remains an upper bound for the performance of recent methods. Other
works like [11, 43, 65, 188, 293] learn how to discriminate different techniques, styles
and contents in the latent space.

Zhu et al. [326] learn a bidirectional mapping between a domain of content
images and paintings using generative adversarial networks. Employing cycle
consistency loss, they directly measure the distance between a backprojection of the
stylized output and the content image in the RGB pixel space. Measuring distances
in the RGB image domain is not just generally prone to be coarse, but, especially for
abstract styles, a pixel-wise comparison of backwards mapped stylized images is not
suited. Then, either content is preserved and the stylized image is not sufficiently
abstract, e.g., not altering object boundaries, or the stylized image has a suitable
degree of abstractness and so a pixel-based comparison with the content image must
fail. Moreover, the more abstract the style is, the more potential backprojections into
the content domain exist, because this mapping is underdetermined (think of the
many possible content images for a single cubistic painting). In contrast, we spare
the ill-posed backward mapping of styles and compare stylized and content images
in the latent space which is trained jointly with the style transfer network. Since
both content and stylized images are run through our encoder, the latent space is
trained to only pay attention to the commonalities, i.e., the content present in both.
Another consequence of the cycle consistency loss is that it requires content and
style images used for training to represent similar scenes [326], and thus training
data preparation for [326] involves tedious manual filtering of samples, while our
approach can be trained on arbitrary unpaired content and style images.
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Content (a) Pollock (b) El-Greco (c) Gauguin (d) Cézanne

Figure 6.4: 1st row - results of style transfer for different styles. 2nd row - sketchy content
visualization reconstructed from the latent space E(x) using method of [185].
(a) The encoder for Pollock does not preserve much content due to the abstract
style; (b) only rough structure of the content is preserved (coarse patches)
because of the distinct style of El Greco; (c) latent space highlights surfaces
of the same color and that fine object details are ignored, since Gauguin was
less interested in details, often painted plain surfaces and used vivid colors;
(d) encodes the thick, wide brushstrokes Cézanne used, but preserves a larger
palette of colors.

6.2 Approach

To enable a fast style transfer that instantly transfers a content image or even frames
of a video according to a particular style, we need a feed-forward architecture [130]
rather than the slow optimization-based approach of [79]. To this end, we adopt an
encoder-decoder architecture that utilizes an encoder network E to map an input
content image x onto a latent representation z = E(x). A generative decoder G
then plays the role of a painter and generates the stylized output image y = G(z)
from the sketchy content representation z. Stylization then only requires a single
forward pass, thus working in real-time.

6.2.1 Training with a Style-Aware Content Loss

Previous approaches have been limited in that training worked only with a single
style image [59, 79, 117, 130, 164, 269, 286] or that style images used for training had
to be similar in content to the content images [326]. In contrast, given a single style
image y0 we include a set Y of related style images yj ∈ Y, which are automatically
selected (see Sec. 6.2.2) from a large art dataset (Wikiart). We do not require the yj
to depict similar content as the set X of arbitrary content images xi ∈ X, which we
simply take from Places365 [322]. Compared to [326], we thus can utilize standard
datasets for content and style and need no tedious manual selection of the xi and
yj as described in Sect. 5.1 and 7.1 of [326].

To train E and G we employ a standard advers [237]arial discriminator D [88] to
distinguish the stylized output G(E(xi)) from real examples yj ∈ Y,
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LD(E, G, D) = E
y∼pY(y)

[log D(y)] + E
x∼pX(x)

[log (1− D(G(E(x))))] (6.1)

However, the crucial challenge is to decide which details to retain from the
content image, something which is not captured by Eq. (6.1). Contrary to previous
work, we want to directly enforce E to strip the latent space of all image details
that the target style disregards. Therefore, the details that need to be retained or
ignored in z depend on the style. For instance, Cubism would disregard texture,
whereas Pointillism would retain low-frequency textures. Therefore, a pre-trained
network or fixed similarity measure [79] for measuring the similarity in content
between xi and yi is violating the art historical premise that the manner, in which
content is preserved, depends on the style. Similar issues arise when measuring
the distance after projecting the stylized image G(E(xi)) back into the domain X of
original images with a second pair of encoder and decoder G2(E2(G(E(xi)))). The
resulting loss proposed in [326],

LcycleGAN = E
x∼pX(x)

[‖x− G2(E2(G(E(x))))‖1], (6.2)

fails where styles become abstract, since the backward projection of abstract art to
the original image is highly underdetermined.

Therefore, we propose a style-aware content loss that is being optimized, while
the network learns to stylize images. Since encoder training is coupled with training
of the decoder, which produces artistic images of the specific style, the latent vector
z produced for the input image x can be viewed as its style-dependent sketchy
content representation. This latent space representation is changing during training
and hence adapts to the style. Thus, when measuring the similarity in content
between input image xi and the stylized image yi = G(E(xi)) in the latent space,
we focus only on those details which are relevant for the style. Let the latent space
have d dimensions, then we define a style-aware content loss as normalized squared
Euclidean distance between E(xi) and E(yi):

Lc(E, G) = E
x∼pX(x)

[
1
d
‖E(x)− E(G(E(x)))‖2

2

]
(6.3)

To show the additional intuition behind the style-aware content loss we used the
method [185] to reconstruct the content image from latent representations trained on
different styles and illustrated it in Fig. 6.4. It can be seen that latent space encodes
a sketchy, style-specific visual content, which is implicitly used by the loss function.
For example, Pollock is famous for his abstract paintings, so reconstruction (a)
shows that the latent space ignores most of the object structure; Gauguin was less
interested in details, painted a lot of plain surfaces and used vivid colors which
is reflected in the reconstruction (c), where latent space highlights surfaces of the
same color and fine object details are ignored.
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Since we train our model for altering the artistic style without supervision
and from scratch, we now introduce extra signal to initialize training and boost
the learning of the primary latent space. The simplest thing to do is to use an
autoencoder loss which computes the difference between xi and yi in the RGB
space. However, this loss would impose a high penalty for any changes in image
structure between input xi and output yi, because it relies only on low-level pixel
information. But we aim to learn image stylization and want the encoder to discard
certain details in the content depending on style. Hence the autoencoder loss will
contradict with the purpose of the style-aware loss, where the style determines
which details to retain and which to disregard. Therefore, we propose to measure
the difference after applying a weak image transformation on xi and yi, which
is learned while learning E and G. We inject in our model a transformer block
T which is essentially a one-layer fully convolutional neural network taking an
image as input and producing a transformed image of the same size. We apply T
to images xi and yi = G(E(xi)) before measuring the difference. We refer to this as
transformed image loss and define it as

LT(E, G) = E
x∼pX(x)

[
1

CHW
||T(x)− T(G(E(x))||22

]
, (6.4)

where C × H ×W is the size of image x and for training T is initialized with
uniform weights.

Fig. 6.3 illustrates the full pipeline of our approach. To summarize, the full
objective of our model is:

L(E, G, D) = Lc(E, G) + Lt(E, G) + λLD(E, G, D), (6.5)

where λ controls the relative importance of adversarial loss. We solve the following
optimization problem:

E, G = arg min
E,G

max
D
L(E, G, D). (6.6)

6.2.2 Style Image Grouping

In this section we explain an automatic approach for gathering a set of related
style images. Given a single style image y0 we strive to find a set Y of related
style images yj ∈ Y. Contrary to [326] we avoid tedious manual selection of style
images and follow a fully automatic approach. To this end, we train a VGG16 [249]
network C from scratch on the Wikiart [138] dataset to predict an artist given the
artwork. The network is trained on the 624 largest (by number of works) artists
from the Wikiart dataset. Note that our ultimate goal is stylization and numerous
artists can share the same style, e.g., Impressionism, as well as a single artist can
exhibit different styles, such as the different stylistic periods of Picasso. However,
we do not use any style labels. Artist classification in this case is the surrogate task
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for learning meaningful features in the artworks’ domain, which allows to retrieve
similar artworks to image y0.

Let φ(y) be the activations of the fc6 layer of the VGG16 network C for input
image y. To get a set of related style images to y0 from the Wikiart dataset Y we
retrieve all nearest neighbors of y0 based on the cosine distance δ of the activations
φ(·), i.e.

Y = {y | y ∈ Y , δ(φ(y), φ(y0)) < t}, (6.7)

where δ(a, b) = 1 + φ(a)φ(b)
||a||2||b||2 and t is the 10% quantile of all pairwise distances in

the dataset Y .

6.3 Implementation Details

The basis for our style transfer model is an encoder-decoder architecture, cf. [130].
The encoder network contains 5 conv layers:
1×conv-stride-1 and 4×conv-stride-2. The decoder network has 9 residual blocks
[102], 4 upsampling blocks and 1×conv-stride-1. For upsampling blocks we used
a sequence of nearest-neighbor upscaling and conv-stride-1 instead of fractionally
strided convolutions [175], which tend to produce heavier artifacts [209]. Discrimi-
nator is a fully convolutional network with 7×conv-stride-2 layers. For a detailed
network architecture description we refer to the supplementary material. We set
λ = 0.001 in Eq. (6.5). During the training process we sample 768× 768 content
image patches from the training set of Places365 [322] and 768× 768 style image
patches from the Wikiart [138] dataset. We train for 300000 iterations with batch
size 1, learning rate 0.0002 and Adam [145] optimizer. The learning rate is reduced
by a factor of 10 after 200000 iterations.

6.3.1 Network Architecture

We incarnate our approach using an encoder-decoder architecture with a dis-
criminator. Below we follow the naming convention similar to the one used in
[326].

Let:
* cFs1-k denote F× F Convolution-InstanceNorm-ReLU layer with k filters and

stride 1;

* cFs1-k-sigmoid denote F× F Convolution-InstanceNorm-Sigmoid layer with
k filters and stride 1;

* cFs1-k-noact denote F× F Convolution-InstanceNorm layer with k filters and
stride 1;

* dF-k denote a F× F Convolution-InstanceNorm-ReLU layer with k filters and
stride 2;
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* dF-k-LReLU denote a F× F Convolution-InstanceNorm-LeakyReLU layer with
k filters and stride 2;

* Rk denote a residual block that contains two 3× 3 convolutional layers fol-
lowed by InstanceNorm [271];

* uk denote an upscaling block that contains nearest-neighbor upscaling by a
factor of 2 followed by Convolution-InstanceNorm-ReLU layer with k filters
and stride 1.

All convolutional layers use reflection padding.

Encoder-decoder architecture. Encoder has InstanceNorm [271] layer at the begin-
ning and 5 convolutional layers: InstanceNorm, c3s1-32, d3-32, d3-64, d3-128,

d3-256. Decoder contains 9 residual blocks, 4 upscaling blocks and 1 convolution
7× 7 with sigmoid activation: R256×9, u256, u128, u64, u32, c7s1-3-sigmoid.

Transformer block T. Transformer block T contains a convolutional layer followed
by a weight normalization layer with fixed norm ||W|| = 1. Convolutional layer: 3
kernels of size 10× 10, stride 1, uniformly initialized.

Discriminator architecture. Discriminator is implemented as a fully convolutional
network and tries to classify if input image patches are real or fake. It contains
7 convolutional layers. We use Leaky ReLU activations with slope 0.2. Archi-
tecture is defined as: d5-128-LReLU, d5-128-LReLU, d5-256-LReLU, d5-512-LReLU,

d5-512-LReLU, d5-1024-LReLU, d5-1024-LReLU,

c3s1-1-noact.
We use 4 auxiliary classifiers (implemented as a convolutional layer with 1 filter

each) to capture image details on different scales [119, 303] and to alleviate artifacts:
auxiliary classifiers were added after 1st, 2nd, 4th and 6th convolutional layers of
the discriminator. We simply sum up all the losses from different scales.

6.3.2 Training Details

All networks are trained from scratch on randomly cropped image patches of size
768× 768 pix. λ in Eq. (6.5) equals to 0.001. We traine for 300000 iterations with
batch size 1 and learning rate 2× 10−4 using Adam [145] optimizer. The learning
rate is reduced by a factor of 10 after 200000 iterations.

In each iteration we alternatively update encoder-decoder and discriminator. To
balance out the discriminator and encoder-decoder training [45] we update the
discriminator solely, if it has accuracy < 0.8, and update only encoder-decoder
otherwise. The discriminator accuracy is calculated using the exponential moving
average during training.
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6 Style-Aware Content Loss for Real-time High-resolution Style Transfer

6.3.3 Style Image Grouping Details

As described in Sec. 6.2.2, the number of style images is not fixed and depends
on the neighborhood size of the query image y0 and how frequent the style is in
the Wikiart [138] dataset. For different style examples in our experiments, it varied
from 55 to 1391 related images. We observe: the more style examples the better, as
long as they are from the same style. Ablation studies (Sec. 6.4.3) show that using
too few style examples (e.g., one) leads to mode collapse; at the same time using
a lot of images, which are less related to each other (e.g., all images of an artist),
produces unsatisfactory stylizations.

6.4 Experiments

To compare our style transfer approach with the state-of-the-art, we first perform
extensive qualitative analysis, then we provide quantitative results based on the
deception score and evaluations of experts from art history. Afterwards in Sect. 6.4.3
we ablate single components of our model and show their importance.

Baselines. Since we aim to generate high-resolution stylizations, for comparison
we run style transfer on our method and all baselines for input images of size
768× 768, unless otherwise specified. We did not not exceed this resolution when
comparing, because some other methods were reaching the GPU memory limit.
We optimize Gatys et al. [79] for 500 iterations using L-BFGS [170]. For Johnson
et al. [130] we used the implementation of [64] and trained a separate network for
every reference style image on the same content images from Places365 [322] as our
method. For Huang et al. [117], Chen et al. [35] and Li et al. [164] implementations
and pre-trained models provided by the authors were used. Zhu et al. [326] was
trained on exactly the same content and style images as our approach using the
source code provided by the authors. Methods [35, 79, 117, 130, 164] utilized only one
example per style, as they cannot benefit from more (cf. the analysis in Fig. 6.2).

6.4.1 Qualitative Results

Full image stylization. In Fig. 6.5 we demonstrate the effectiveness of our approach
for stylizing different contents with various styles. Chen et al. [35] work on the
overlapping patches extracted from the content image, swapping the features of
the original patch with the features of the most similar patch in the style image,
and then averages the features in the overlapping regions, thus producing an over-
smoothed image without fine details (Fig. 6.5 (d)). [117] produces a lot of repetitive
artifacts, especially visible on flat surfaces, cf. Fig. 6.5 (e, rows 1, 4–6). Method of Li
et al. [164] fails to understand the content of the image and applies different colors
in the wrong locations (Fig. 6.5 (f)). Johnson et al. [130] and Zhu et al. [326] often
fail to alter content image and their effect may be characterized as shifting the color
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Style Content (a) Ours (b) [79] (c) [326] (d) [35] (e) [117] (f) [164] (g) [130]

Figure 6.5: Results from different style transfer methods. We compare methods on different
styles and content images.

histogram, e.g., Fig. 6.5 (g, rows 3, 7; c, rows 1, 3–4). One reason for such failure
cases of [326] is the loss in the RGB pixel space based on the difference between a
backward mapping of the stylized output and the content image. Another reason
for this is that we utilized the standard Places365 [322] dataset and did not hand-
pick training content images, as is advised for [326]. Thus, artworks and content
images used for training differed significantly in their content, which is the ultimate
test for a stylization that truly alters the input and goes beyond a direct mapping
between regions of content and style images. The optimization-based method [79]
often works better than other baselines, but produces a lot of prominent artifacts,
leading to details of stylizations looking unnatural, cf. Fig. 6.5 (b, rows 4, 5, 6). This
is due to an explicit minimization of the loss directly on the pixel level. In contrast
to this, our model can not only handle styles, which have salient, simple to spot
characteristics, but also styles, such as El Greco’s Mannerism, with less graspable
stylistic characteristics, where other methods fail (Fig. 6.5, b–g, 5th row).

Fine-grained style details. In Fig. 6.7 we show zoomed in cut-outs from the
stylized images. Interestingly, the stylizations of methods [35, 79, 109, 117, 164] do
not change much across styles (compare Fig. 6.7 (d, f–i, rows 1–3)). Zhu et al.
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Content (a) Early period (b) Stylized (c) Late period (d) Stylized

Figure 6.6: Artwork examples of the early artistic period of van Gogh (a) and his late period
(c). Style transfer of the content image (1st column) onto the early period is
presented in (b) and the late period in (d).

[326] produce more diverse images for different styles, but obviously cannot alter
the edges of the content (blades of grass are clearly visible on all the cutouts in
Fig. 6.7 (e)). Fig. 6.7 (c) shows the stylized cutouts of our approach, which exhibit
significant changes from one style to another. Another interesting example is the
style of Pollock, Fig. 6.7 (row 8), where the style-aware loss allows our model
to properly alter content to the point of discarding it – as would be expected
from a Pollock action painting. Our approach is able to generate high-resolution
stylizations with a lot of style specific details and retains those content details
which are necessary for the style.

Style transfer for different periods of van Gogh. We now investigate our ability
to properly model fine differences in style despite using a group of style images.
Therefore, we take two reference images Fig. 6.6 (a) and (c) from van Gogh’s early
and late period, respectively, and acquire related style images for both from Wikiart.
It can be clearly seen that the stylizations produced for either period Fig. 6.6 (b,
d) are fairly different and indeed depict the content in correspondence with the
style of early (b) and late (d) periods of van Gogh. This highlights that collections
of style images are properly used and do not lead to an averaging effect.

High-resolution image generation. Our approach allows us to produce high
quality stylized images in high-resolution. Fig. 6.8 illustrates an example of the
generated piece of art in the style of Berthe Morisot with resolution 1280× 1280.
The result exhibits a lot of fine details such as color transitions of the oil paint and
brushstrokes of different sizes. In Fig. 6.13, 6.14 we show extra high-resolution
images stylized by our approach. Additional comparison of our method against
baselines and more high-resolution visual results are available on the project page2.

Altering the style of an existing artwork. Our method is able to change the style
of an existing artwork, rendering it in another style. It means, that our algorithm

2https://compvis.github.io/adaptive-style-transfer
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Style (a) (b) (c) (d) [79] (e) [326] (f) [35] (g) [117] (h) [164] (i) [130]

Figure 6.7: Details from stylized images produced for different styles for a fixed content
image (a). (b) is our entire stylized image, (c) the zoomed in cut-out and (d)-(i)
the same region for competitors. Note the variation across different styles along
the column for our method compared to other approaches. This highlights the
ability to adapt content (not just colors or textures) where demanded by a style.
Fine grained artistic details with sharp boundaries are produced, while altering
the original content edges.
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Figure 6.8: High-resolution image (1280x1280 pix) generated by our approach in style of
Berthe Morisot. A lot of fine details and brushstrokes are visible. A style
example is shown in the bottom left corner.

can also handle content images which are artistic, which, to our knowledge, was
never shown in previous work before. We refer the reader to the results on the
project page.

Real-time HD video stylization. We also apply our method to several videos. Our
approach can stylize High-definition (HD) videos (1280× 720) at 9 FPS. Fig. 6.9
shows stylized frames from a video. We did not use a temporal regularization to
show that our method produces equally good results for consecutive frames with
varying appearance without extra constraints. Stylized videos are available on the
project page.

6.4.2 Quantitative Evaluation

Style transfer deception rate. While several metrics [29, 108, 234] have been pro-
posed to evaluate the quality of image generation, until now no evaluation metric
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Style examples Stylized frames

Figure 6.9: Results of our approach applied to the HD video of Eadweard Muybridge
”The horse in motion” (1878). Every frame was independently processed (no
smoothing or post-processing) by our model in the style of Picasso. Video
resolution is 1920× 1280 pix. The full video is available on YouTube: https:
//youtu.be/TtHJcL8Feu0.

has been proposed for an automatic evaluation of style transfer results. To measure
the quality of the stylized images, we introduce the style transfer deception rate. We
use a VGG16 network trained from scratch to classify 624 artists on Wikiart. Style
transfer deception rate is calculated as the fraction of generated images which were
classified by the network as the artworks of an artist for which the stylization was
produced. For fair comparison with other approaches, which used only one style
image y0 (hence only one artist), we restricted Y to only contain samples coming
from the same artist as the query example y0. We selected 18 different artists (i.e.
styles). For every method we generated 5400 stylizations (18 styles, 300 per style).
In Tab. 6.1 we report mean deception rate for 18 styles. Our method achieves 0.393
significantly outperforming the baselines. For comparison, mean accuracy of the
network on hold-out real images of aforementioned 18 artists from Wikiart is 0.616.

Human art history experts perceptual studies. Three experts (with a Ph.D. in art
history with a focus on modern and pre-modern paintings) have compared the
results of our method against recent work. Each expert was shown 1000 groups
of images. Each group consists of stylizations that were generated by different
methods based on the same content and style images. Experts were asked to choose
one image which best and most realistically reflects the current style. The score is
computed as the fraction of times a specific method was chosen as the best in the
group. We calculate a mean expert score for each method using 18 different styles
and report them in Tab. 6.1. Here, we see that the experts selected our method in
around 50% of the cases.

Speed and memory. Tab. 6.2 shows the time and memory required for stylization
of a single image of size 768× 768 px for different methods. One can see that our
approach and that of [130] and [326] have comparable speed and only very modest
demands on GPU memory, compared to modern graphics cards.
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6 Style-Aware Content Loss for Real-time High-resolution Style Transfer

Method Deception rate Expert score

Content images 0.002 -
AdaIn [117] 0.074 0.060
PatchBased [35] 0.040 0.132
Johnson et al. [130] 0.051 0.048
WCT [164] 0.035 0.044
CycleGan [326] 0.139 0.044
Gatys et al. [79] 0.147 0.178
Ours 0.393 0.495

Method Time GPU memory

AdaIn [117] 0.16 sec 8872 MiB
PatchBased [35] 8.70 sec 4159 MiB
Johnson et al. [130] 0.06 sec 671 MiB
WCT [164] 5.22 sec 10720 MiB
CycleGan [326] 0.07 sec 1391 MiB
Gatys et al. [79] 200 sec 3887 MiB
Ours 0.07 sec 1043 MiB

Table 6.1: Mean deception rate and mean
expert score for different methods.
The higher the better.

Table 6.2: Average inference time and GPU
memory consumption, measured
on a Titan X Pascal, for different
methods with batch size 1 and
input image of 768× 768 pix.

Style (a) Content (b) Ours (c) (d) (e) (f)

Figure 6.10: Different variations of our method for Gauguin stylization. See Sect. 6.4.3 for
details. (a) Content image; (b) full model (Lc, Lrgb and LD); (c) Lrgb and LD;
(d) without transformer block; (e) only LD; (f) trained with all of Gauguin’s
artworks as style images. Please zoom in to compare.

6.4.3 Ablation Studies

Effect of different losses. We study the effect of different components of our
model in Fig. 6.10. Removing the style-aware content loss significantly degrades
the results, (c). We observe that without the style-aware loss training becomes
instable and often stalls. If we remove the transformed image loss, which we
introduced for a proper initialization of our model that is trained from scratch,
we notice mode collapse after 5000 iterations. Training directly with pixel-wise
L2 distance causes a lot of artifacts (grey blobs and flaky structure), (d). Training
only with a discriminator neither exhibits the variability in the painting nor in the
content, (e). Therefore we conclude that both the style-aware content loss and the
transformed image loss are critical for our approach.

Single vs collection of style images. Here, we investigate the importance of the
style image grouping. First, we trained a model with only one style image of
Gauguin, which led to mode collapse. Second, we trained with all of Gauguin’s
artworks as style images (without utilizing style grouping procedure). It produced
unsatisfactory results, cf. Fig. 10(f), because style images comprised several distinct
styles. Therefore we conclude that to learn a good style transfer model it is
important to group style images according to their stylistic similarity.
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Style Content (a) (b)

Figure 6.11: Encoder ablation studies: (a) stylization using our model; (b) stylization using
pre-trained VGG16 encoder instead of E.

(a) Style (b) Content (c) Ours (d) LT → Lconv1

Figure 6.12: Investigation of the importance of an independent transformer block. (a) style
image (van Gogh); (b) content image; (c) our stylization; (d) stylization with
the loss Lconv1 instead of LT.

Encoder ablation. To investigate the effect of our encoder E, we substitute it with
VGG16 [249] encoder (up to conv5 3) pre-trained on ImageNet. The VGG encoder
retains features that separate object classes (since it was trained discriminatively),
as opposed to our encoder which is trained to retain style-specific content details.
Hence, our encoder is not biased towards class-discriminative features, but is style
specific and trained from scratch. Fig. 6.11 (a, b) show that our approach produces
better results than with pre-trained VGG16 encoder.

Transformer block ablation. To demonstrate the need in an independent trans-
former block, we replaced the transformed image loss LT with a loss Lconv1 using
conv1 features of the encoder,

Lconv1 = (E, G) = E
x∼pX(x)

[
1

dconv1
||φconv1(x)− φconv1(G(E(x))||22

]
, (6.8)

where φconv1(x) are the activations of the conv1 layer of the encoder E for input
image x and dconv1 is the dimensianality of φconv1(x). This produced worse results
(cf. Fig. 6.12 (d)), since the loss Lconv1 is then directly tied to the convolutional layer
used for our style-aware content representation in the encoder. In contrast, the
proposed transformer block can be learned independently from the early layers of
the encoder.
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6.5 Conclusion

This chapter has addressed major conceptual issues in state-of-the-art approaches
for style transfer. We overcome the limitation of only a single style image or the
need for style and content training images to show similar content. Moreover,
we exceed a mere pixel-wise comparison of stylistic images or models that are
pre-trained on millions of ImageNet bounding boxes. The proposed style-aware
content loss makes the encoder network extract merely content representation
while adapting to the quirks of artistic style, determining how the content is
preserved. Our approach enables a real-time, high-resolution encoder-decoder
based stylization of images and videos and significantly improves stylization by
capturing how style affects content. 3

3Solution to Fig. 6.1: patches 3 and 5 were generated by our approach, others by the artist.
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Figure 6.13: High-resolution (2288× 1280 pix) Pissarro stylization by our approach. The
top row depicts 4 randomly chosen from set Y instances of style obtained by
the style image grouping.
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Figure 6.14: High-resolution (1712× 1280 pix) Roerich stylization by our approach. The
top row depicts 4 randomly chosen from set Y instances of style obtained by
the style image grouping.
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7 Conclusion

The big question which was the focus of this dissertation is bridging the gap
between current Computer Vision systems and future systems that are expected
to be self-motivated (i.e., not requiring constant human feedback) and capable of
accumulating experience for faster learning of new tasks. As a step towards this,
we introduced several new approaches for learning such visual representations that
can effectively generalize to previously unseen data. We considered two scenarios:
(i) some amount of annotations is available, and (ii) absolutely no annotations are
provided.

In Chapters 3, 4 we showed that it is possible to learn generalizable represen-
tations from raw input data without annotations. We proposed a novel method
that can learn visual representations by discovering regular structures in unlabeled
data and using them as a supervisory signal (Chapter 3). Even if the initial data
representation is not powerful enough and cannot be used to estimate reliable rela-
tionships between certain samples, these samples can still be used for unsupervised
learning by enforcing a partial ordering between them (Chapter 4).

Next, we tackled the problem of efficient learning from limited annotated data. In
the same spirit as the above-mentioned techniques, in addition to the user-provided
labels we exploited regularities in the data. We showed that training specialized
learners for different subsets of the data discovered by unsupervised grouping
facilitates learning more generalizable representations (Chapter 2). Furthermore,
we advanced the methods for generalization to completely novel tasks without
supervision. To this end, we introduced a self-training approach that leverages the
system’s prior knowledge to master a novel task without additional annotations
(Chapter 5).

Finally, we studied the learning of disentangled visual representations. We
argue that such representations are required to separate different visual factors
within an image and enable further analysis and modification of each of the
factors individually. We introduced a novel method for learning such a content
representation of an image that is disentangled from its style. This task is especially
challenging because it is not possible to collect annotations of this kind; thus, the
proposed approach had to be self-supervised. Our representation made it possible
to produce compelling high-resolution stylizations of arbitrary images and videos
(Chapter 6).

Future directions. While significant progress has been made in large-scale super-
vised and unsupervised learning in recent years, the power-efficiency of the current
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deep learning approaches should still be improved. If we look at us, humans,
we are continually learning new information by observing and interacting with
our environment, processing large amounts of visual data in real-time, and can
learn to solve numerous seemingly unrelated tasks. This hints at the exceptional
power-efficiency of our brain. In contrast, in deep learning, we see a trend of
increasing power-consumption of models. Recent models require several megawatt-
hours of energy to be trained while being limited to a specific domain [21, 56, 141].
Developing more energy-effective machine learning models can democratize the
whole field of AI research and make them available not only to large corporations
like Google, but to any academic research group, and will ultimately increase their
integration in our everyday life. It will enable further development of the lifelong
machine learning approaches [39] which aim at mimicking the human learning
process – incremental and continuous attainment of new knowledge and skills
during a long time. By the words of Zhiyuan Chen and Bing Liu [39]:

Without the capability of retaining and accumulating the knowledge learned
in the past, making inference about it, and using the knowledge to help future
learning and problem solving, achieving general intelligence is quite unlikely.

Another underexplored research direction is multipurpose intelligent systems that
can solve multiple tasks simultaneously. This can potentially enable learning richer
representations by exploiting relationships between different tasks. The tasks may
span different domains and modalities, e.g., images, sound, text, or any other
sensory data. While there were several attempts at combining multiple tasks and
modalities for learning [52, 134, 147, 314], we hope to see more research in this
direction in the future.
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Acronyms

AI Artificial Intelligence
AUC Area under curve
CNN Convolutional Neural Network
DML Deep Metric Learning
Exemplar-SVM Exemplar Support Vector Machine
FPN Feature Pyramid Network
GAN Generative Adversarial Network
GPU Graphics processing unit
HD High-definition
HOG Histogram of Oriented Gradients
ICA Independent component analysis
LDA Linear Discriminant Analysis
LSTM Long Short-Term Memory
LTP Local temporal average pooling
MDS Multidimensional scaling
NMF Non-negative matrix factorization
PCA Principal component analysis
PCK Percentage of Correct Keypoints
PCP Percentage of Correct Parts
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
SGD Stochastic gradient descent
SMPL Skinned Multi-Person Linear Model
SVM Support Vector Machine
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